第七章.深度学习
第七章.深度学习
7.1 深度学习
深度学习是加深了层的深度神经网络。
1.加深层的好处
1).可以减少网络的参数数量
-
5*5的卷积运算示例:

-
重复两次3*3的卷积层示例:

-
图像说明:
①.一次5 * 5的卷积运算的区域可以由两次3 * 3的卷积运算抵消,前者的参数数量25(55),后者的参数数量18(23*3),通过叠加卷积层,参数数量减少了。
②.叠加小型滤波器来加深网络的好处是可以减少参数的数量,扩大感受野(给神经元施加变化的某个局部空间区域)。
2).使学习更加高效
- 通过加深层,可以减少学习数据,从而高效的进行学习。(加深层可以分层次的传递信息)
2.深度学习网络
1).VGG
- VGG是由卷积层和池化层构成的基础CNN,它的特点在于将有权重的层(卷积层或全连接层)叠加至16层或19层。

- 注意:
VGG是基于3*3的小型滤波器卷积层运算是连续进行的,通过重复进行“卷积层重叠两次到四次,在通过池化层减半的”处理,最后经由全连接层输出结果。
2).GoogLeNet
- 图中的矩形表示卷积层和池化层

- GoogLeNet的特征:网络不仅在纵向上有深度,在横向上也有广度(广度也称为“Inception结构”),Inception结构使用了多个大小不同的滤波器(和池化),最后再合并他们的结果。

3).ResNet
- 在深度学习中,过度使用加深层的话,很多情况下学习将不能顺利进行,导致最终性能不佳,在ResNet中,为了解决这个问题,导入了“快捷结构”,导入这个结构后,就可以随着层的加深而不断提升性能。

- 图像说明:
在连续2层的卷积层中,将输入x跳转至两层后的输出,通过“快捷结构”,原来的2层卷积层的输出F(x)变成了F(x)+x,即使加深层,也能高效的学习,这是因为,通过快捷结构,反向传播时信号可以无衰减的传递。
相关文章:
第七章.深度学习
第七章.深度学习 7.1 深度学习 深度学习是加深了层的深度神经网络。 1.加深层的好处 1).可以减少网络的参数数量 5*5的卷积运算示例: 重复两次3*3的卷积层示例: 图像说明: ①.一次5 * 5的卷积运算的区域可以由两次3 * 3的卷积运算抵消&a…...
小学生学Arduino---------点阵(三)动态的显示与清除
学习目标: 1、理解“整数值”的概念与使用 2、理解“N1”指令的意义 3、掌握“反复执行多次”指令的使用 4、掌握屏幕模块的清除功能指令 5、理解“反复执行”指令与“反复执行多次”指令的嵌套使用 6、搭建电路图 7、编写程序 效果: 整数包括…...
opencv图片处理
目录1 图片处理1.1 显示图片1.2 旋转图片1.3 合并图片1.4、Mat类1.4.1、像素的储存结构1.4.2、访问像素数据1.6、rgb转灰度图1.7、二值化1.8、对比度和亮度1.9、图片缩放1.9.1、resize临近点算法双线性内插值1.9.2、金字塔缩放1.10、图片叠加1 图片处理 1.1 显示图片 #includ…...
C++ Primer Plus 学习笔记(二)—— 复合类型
数组 当我们只是定义了数组,而没有对数组进行初始化时,那数组的值将是未定义的。 在对数组进行初始化时,如果只对数组的一部分进行初始化,编译器会将把其他元素自动设置为0。 #include <iostream>using namespace std;in…...
代码随想录算法训练营第七天 | 454.四数相加II 、 383. 赎金信、15. 三数之和、18. 四数之和 、总结
打卡第七天,还是哈希表。 今日任务 454.四数相加II383.赎金信15.三数之和18.四数之和总结 454.四数相加II 代码随想录 class Solution { public:int fourSumCount(vector<int>& nums1, vector<int>& nums2, vector<int>& nums3, ve…...
apply函数族
apply函数族 apply函数族是R语言中帮助用户实现高效的向量化运算的一系列函数,包括apply,lapply,sapply,vapply等。 apply() apply函数以列或行为单位进行循环操作,可以处理matrix、array数据,返回一个向量或matrix。 apply(data,1/2,fuc…...
读书笔记可读性素材
《深入理解Java虚拟机》 《深入理解Java虚拟机》 《深入理解Java虚拟机》 本地方法栈(Native Method Stacks) 本地方法栈(Native Method Stacks) 本地方法栈(Native Method Stacks) -----------------…...
【C++】vector 模拟实现
vectorvector 容器vector 基本使用vector 定义库中各类接口的使用迭代器容量相关接口元素访问相关接口元素修改相关接口模拟实现 vector前期准备构造与析构赋值运算符重载迭代器相关容量相关元素访问相关元素的修改相关二维数组的创建对于自定义类型数据的测试vector 容器 C S…...
canvas初体验
canvas介绍 Canvas 最初由Apple于2004 年引入,用于Mac OS X WebKit组件,为仪表板小部件和Safari浏览器等应用程序提供支持。后来,它被Gecko内核的浏览器(尤其是Mozilla Firefox),Opera和Chrome实现&#x…...
JavaWeb12-线程通讯(线程等待和唤醒)
目录 1.方法介绍 1.1.wait()/wait(long timeout):让当前线程进入等待状态。 1.1.1.wait执行流程 1.1.2.wait结束等待的条件 1.1.3.wait() VS wait(long timeout) 1.1.4.为什么wait要放在Object中? --->PS:wait(0) 和 sleep(0) 的区…...
江苏专转本如何事半功倍的备考
专转本如何事半功倍的备考 一个人学习成绩的优劣取决于他的学习能力,学习能力包括三个要素:规范的学习行为;良好的学习习惯;有效的学习方法。有了规范的学习行为才能培养出良好的学习习惯,形成了良好的学习习惯就会形成…...
linux下安装mongoDB
一、下载mongoDB包 下载地址: https://www.mongodb.com/try/download/community 个人建议:如果是学习阶段,使用5以下版本更好些。 二、安装及配置 1、安装 # 1、解压 $ tar -zxvf mongodb-linux-x86_64-rhel70-4.4.19-rc1.tgz# 2、迁移目…...
掌握MySQL分库分表(七)广播表、绑定表实战,水平分库+分表实现及之后的查询和删除操作
文章目录什么是广播表广播表实战数据库配置表Java配置实体类配置文件测试广播表水平分库分表配置文件运行测试什么是绑定表?绑定表实战配置数据库配置Java实体类配置文件运行测试水平分库分表后的查询和删除操作查询操作什么是广播表 指所有的分片数据源中都存在的…...
企业为什么需要数据可视化报表
数据可视化报表是在商业环境、市场环境已经改变之后,发展出来为当前企业提供替代解决办法的重要方案。而且信息化、数字化时代,很多企业已经进行了初步的信息化建设,沉淀了大量业务数据,这些数据作为企业的资产,是需要…...
5个有效的华为(HUAWEI)手机数据恢复方法
5个有效的手机数据恢复方法 华为智能手机中的数据丢失比许多人认为的更为普遍。发生这种类型的丢失有多种不同的原因,因此数据恢复软件的重要性。您永远不知道您的智能手机何时会在这方面垮台;因此,预防总比哀叹好,这就是为什么众…...
【Java并发编程】线程安全(一)Synchronized原理
Synchronized底层实现 简单来说,Synchronized关键字的执行主体是线程对象,加锁是通过一个锁对象来完成的是,而锁对象底层关联了一个c源码的monitor的对象,monitor对象底层又对应了操作系统级别的互斥锁,同一时刻只有一…...
[apollo]vue3.x中apollo的使用
[apollo]vue3.x中apollo的使用通过客户端获取Apollo配置环境工具的安装获取Apollo配置相关代码错误提示Uncaught (in promise) Error: Apollo client with id default not found. Use provideApolloClient() if you are outside of a component setup通过开放接口获取Apollo配置…...
system()函数启用新进程占有原进程的文件描述符表的问题
我在A程序中占用了/dev/video0这个独占模式的设备文件,在A中用system函数启用了B程序,B程序的代码中并不包含对/dev/video0的访问,但是我发现B程序也占用了/dev/video0,并且我在A程序中关闭了/dev/video0后,A程序不再占…...
nignx(安装,正反代理,安装tomcat设置反向代理,ip透传)
1安装nginx 安装wget Yum install -y wget 下载(链接从官网找到右键获取) 以下过程root 安装gcc Yum -y install gcc c 安装pcre Yum install -y pcre pcre-devel Openssl Yum install -y openssl openssl-devel 安装zlib Yum install -y zlib zlib-devel 安装make Yum inst…...
sklearn模块常用内容解析笔记
文章目录 回归模型评价指标R2_score预备知识R2_score计算公式r2_score使用方法注意事项参考文献回归模型评价指标R2_score 回归模型的性能的评价指标主要有:RMSE(平方根误差)、MAE(平均绝对误差)、MSE(平均平方误差)、R2_score。但是当量纲不同时,RMSE、MAE、MSE难以衡量模…...
HTML 语义化
目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案: 语义化标签: <header>:页头<nav>:导航<main>:主要内容<article>&#x…...
设计模式和设计原则回顾
设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...
Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
网络编程(UDP编程)
思维导图 UDP基础编程(单播) 1.流程图 服务器:短信的接收方 创建套接字 (socket)-----------------------------------------》有手机指定网络信息-----------------------------------------------》有号码绑定套接字 (bind)--------------…...
Java面试专项一-准备篇
一、企业简历筛选规则 一般企业的简历筛选流程:首先由HR先筛选一部分简历后,在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如:Boss直聘(招聘方平台) 直接按照条件进行筛选 例如:…...
docker 部署发现spring.profiles.active 问题
报错: org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...
智能AI电话机器人系统的识别能力现状与发展水平
一、引言 随着人工智能技术的飞速发展,AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术,在客户服务、营销推广、信息查询等领域发挥着越来越重要…...
Java毕业设计:WML信息查询与后端信息发布系统开发
JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发,实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构,服务器端使用Java Servlet处理请求,数据库采用MySQL存储信息࿰…...
现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?
现有的 Redis 分布式锁库(如 Redisson)相比于开发者自己基于 Redis 命令(如 SETNX, EXPIRE, DEL)手动实现分布式锁,提供了巨大的便利性和健壮性。主要体现在以下几个方面: 原子性保证 (Atomicity)ÿ…...
【JVM面试篇】高频八股汇总——类加载和类加载器
目录 1. 讲一下类加载过程? 2. Java创建对象的过程? 3. 对象的生命周期? 4. 类加载器有哪些? 5. 双亲委派模型的作用(好处)? 6. 讲一下类的加载和双亲委派原则? 7. 双亲委派模…...
