Pytorch intermediate(二) ResNet
实现了残差网络,残差网络结构。代码比之前复杂很多
conv3x3:将输入数据进行一次卷积,将数据转换成为,残差块需要的shape大小
ResidualBlock:残差块,也是所谓的恒等块。为什么被称为恒等块,大概可以理解为经过几层卷积过后大小形状不变,并且能和输入相加;如果形状变了,那么输入也会利用一次卷积得到和残差块输出大小相同的数据块。
可以看到在残差块中有一个判断,就是判断输入数据是否被向下采样,也就是形状是否变化,如果变化就进行上述处理。
ResNet:构建一个完整的残差网络。传入参数是一个残差块的结构,还有每一层中残差块的个数元组。重点看以下其中的层次结构。
conv3x3:将输入图片变成16通道
输入通道数:16
layer1:输入通道:16,输出通道:16,padding = 0,stride = 0
layer2:输入通道:16,输出通道:32,padding = 0, stride = 2。由于输入不等于输出通道数,增加了一层卷积层,并且带有对应的stride。
layer3:输入通道:32,输出通道:64,其余同上
pooling:均值池化
fc:全连接
update_lr:在每个epoch之后实现对learning_rate的下降
同样由于加入了batchnorm层,测试时需要使用model.eval()
网络结构:
ResNet((conv): Conv2d(3, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace)(layer1): Sequential((0): ResidualBlock((conv1): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace)(conv2): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(1): ResidualBlock((conv1): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace)(conv2): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(layer2): Sequential((0): ResidualBlock((conv1): Conv2d(16, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)(bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace)(conv2): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(downsample): Sequential((0): Conv2d(16, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): ResidualBlock((conv1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace)(conv2): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(layer3): Sequential((0): ResidualBlock((conv1): Conv2d(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace)(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(downsample): Sequential((0): Conv2d(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): ResidualBlock((conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace)(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(avg_pool): AvgPool2d(kernel_size=8, stride=8, padding=0)(fc): Linear(in_features=64, out_features=10, bias=True)
)
代码如下 :
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')# Hyper-parameters
num_epochs = 80
learning_rate = 0.001# Image preprocessing modules
transform = transforms.Compose([transforms.Pad(4),transforms.RandomHorizontalFlip(),transforms.RandomCrop(32),transforms.ToTensor()])# CIFAR-10 dataset
train_dataset = torchvision.datasets.CIFAR10(root='../../data/',train=True, transform=transform,download=True)test_dataset = torchvision.datasets.CIFAR10(root='../../data/',train=False, transform=transforms.ToTensor())# Data loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,batch_size=100, shuffle=True)test_loader = torch.utils.data.DataLoader(dataset=test_dataset,batch_size=100, shuffle=False)# 3x3 convolution
def conv3x3(in_channels, out_channels, stride=1):return nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)# Residual block
class ResidualBlock(nn.Module):def __init__(self, in_channels, out_channels, stride=1, downsample=None):super(ResidualBlock, self).__init__()self.conv1 = conv3x3(in_channels, out_channels, stride)self.bn1 = nn.BatchNorm2d(out_channels)self.relu = nn.ReLU(inplace=True)self.conv2 = conv3x3(out_channels, out_channels)self.bn2 = nn.BatchNorm2d(out_channels)self.downsample = downsampledef forward(self, x):residual = xout = self.conv1(x)out = self.bn1(out)out = self.relu(out)out = self.conv2(out)out = self.bn2(out)if self.downsample:residual = self.downsample(x)out += residualout = self.relu(out)return out# ResNet
class ResNet(nn.Module):def __init__(self, block, layers, num_classes=10):super(ResNet, self).__init__()self.in_channels = 16self.conv = conv3x3(3, 16)self.bn = nn.BatchNorm2d(16)self.relu = nn.ReLU(inplace=True)self.layer1 = self.make_layer(block, 16, layers[0])self.layer2 = self.make_layer(block, 32, layers[1], 2)self.layer3 = self.make_layer(block, 64, layers[2], 2)self.avg_pool = nn.AvgPool2d(8)self.fc = nn.Linear(64, num_classes)def make_layer(self, block, out_channels, blocks, stride=1):downsample = Noneif (stride != 1) or (self.in_channels != out_channels):downsample = nn.Sequential(conv3x3(self.in_channels, out_channels, stride=stride),nn.BatchNorm2d(out_channels))layers = []layers.append(block(self.in_channels, out_channels, stride, downsample))self.in_channels = out_channelsfor i in range(1, blocks):layers.append(block(out_channels, out_channels))return nn.Sequential(*layers)def forward(self, x):out = self.conv(x)out = self.bn(out)out = self.relu(out)out = self.layer1(out)out = self.layer2(out)out = self.layer3(out)out = self.avg_pool(out)out = out.view(out.size(0), -1)out = self.fc(out)return outmodel = ResNet(ResidualBlock, [2, 2, 2]).to(device)# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)# For updating learning rate
def update_lr(optimizer, lr): for param_group in optimizer.param_groups:param_group['lr'] = lr# Train the model
total_step = len(train_loader)
curr_lr = learning_rate
for epoch in range(num_epochs):for i, (images, labels) in enumerate(train_loader):images = images.to(device)labels = labels.to(device)# Forward passoutputs = model(images)loss = criterion(outputs, labels)# Backward and optimizeoptimizer.zero_grad()loss.backward()optimizer.step()if (i+1) % 100 == 0:print ("Epoch [{}/{}], Step [{}/{}] Loss: {:.4f}".format(epoch+1, num_epochs, i+1, total_step, loss.item()))# Decay learning rateif (epoch+1) % 20 == 0:curr_lr /= 3update_lr(optimizer, curr_lr)# Test the model
model.eval()
with torch.no_grad():correct = 0total = 0for images, labels in test_loader:images = images.to(device)labels = labels.to(device)outputs = model(images)_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()print('Accuracy of the model on the test images: {} %'.format(100 * correct / total))# Save the model checkpoint
torch.save(model.state_dict(), 'resnet.ckpt')
相关文章:
Pytorch intermediate(二) ResNet
实现了残差网络,残差网络结构。代码比之前复杂很多 conv3x3:将输入数据进行一次卷积,将数据转换成为,残差块需要的shape大小 ResidualBlock:残差块,也是所谓的恒等块。为什么被称为恒等块,大概…...
【2023集创赛】加速科技杯作品:高光响应的二硫化铼光电探测器
本文为2023年第七届全国大学生集成电路创新创业大赛(“集创赛”)加速科技杯西北赛区二等奖作品分享,参加极术社区的【有奖征集】分享你的2023集创赛作品,秀出作品风采,分享2023集创赛作品扩大影响力,更有丰…...
编写postcss插件,全局css文件px转vw
跟目录下创建plugins文件夹,创建postcss-px-to-viewport.ts文件 文件内代码: // postcss 的插件 vite内置了postCss插件 无需安装 import { Plugin } from postcss;interface Options {viewportWidth: number }const Options {viewportWidth: 375, // …...
精品SpringCloud的B2C模式在线学习网微服务分布式
《[含文档PPT源码等]精品基于SpringCloud实现的B2C模式在线学习网站-微服务-分布式》该项目含有源码、文档、PPT、配套开发软件、软件安装教程、项目发布教程等 软件开发环境及开发工具: 开发语言:Java 框架:springcloud JDK版本…...
解决vue项目导出当前页Table为Excel
解决vue项目中导出当前页表格为Excel表格的方案 用到的技术: Vue2Element-uifile-saverxlsx 1、创建vue项目,安装element-ui 2、创建一个组件,组件内放入表格,和导出按钮 <template><div><!-- 导出的按钮 -->…...
C++设计模式_04_Strategy 策略模式
接上篇,本篇将会介绍C设计模式中的Strategy 策略模式,和上篇模板方法Template Method一样,仍属于“组件协作”模式,它与Template Method有着异曲同工之妙。 文章目录 1. 动机( Motivation)2. 代码演示Stra…...
目标检测YOLO实战应用案例100讲-基于YOLOv3多模块融合的遥感目标检测(中)
目录 2.2.3 YOLO 2.3 目标检测算法分析 2.3.1 目标检测结果评价指标...
element 表格fixed列高度无法100%
下文提到的滚动条皆为横向滚动条错误方法(旧方法,点击查看旧博客) 一下代码虽然能解决fixed列高度无法100%问题,但是会出现fixed列下面的滚动条无法被点击的问题(被fixed列遮挡),所以该方法并不…...
【接口自动化测试】Eolink Apilkit 安装部署,支持 Windows、Mac、Linux 等系统
Eolink Apikit 有三种客户端,可以依据自己的情况选择。三种客户端的数据是共用的,因此可以随时切换不同的客户端。 我们推荐使用新推出的 Apikit PC 客户端,PC 端拥有线上产品所有的功能,并且针对本地测试、自动化测试以及使用体…...
解决sass问题:npm ERR! node-sass@9.0.0 postinstall: `node scripts/build.js`
目录 一、遇到问题 解决办法 二、 再次遇到问题 解决办法 题外话 一、遇到问题 1.运行这个项目的适合,遇到了没有sass的问题 解决办法 然后就用命令下载sass npm install node-sass 二、 再次遇到问题 2.下载sass的时候又发现了一个这样的问题 npm ER…...
Python技巧---tqdm库的使用
文章目录 一、tqdm基本知识二、在pytorch中使用tqdm 提示:以下是本篇文章正文内容,下面案例可供参考 一、tqdm基本知识 “tqdm” 是一个 Python 库,用于在命令行界面中创建进度条。 基本使用如下: from tqdm import tqdm impor…...
linux-线程条件变量(cond)
概述 与互斥锁不同,条件变量是用来等待而不是用来上锁的。条件变量用来自动阻塞一个线程,直到某特殊情况发生为止。通常条件变量和互斥锁同时使用 。 条件变量使我们可以睡眠等待某种条件出现。条件变量是利用线程间共享的全局变量进行同步的一种机制&a…...
面试算法6:排序数组中的两个数字之和
题目 输入一个递增排序的数组和一个值k,请问如何在数组中找出两个和为k的数字并返回它们的下标?假设数组中存在且只存在一对符合条件的数字,同时一个数字不能使用两次。例如,输入数组[1,2,4,6&…...
【智能家居-大模型】构建未来,聆思大模型智能家居交互解决方案正式发布
LISTENAI 近日,国内11家大模型陆续通过《生成式人工智能服务管理暂行办法》备案,多家大模型产品已正式开放,激发了新一轮大模型热潮。大模型在自然语言理解方面的巨大突破,实现了认知智能的技术跃迁,带来了时代的智慧…...
通讯网关软件002——利用CommGate X2HTTP-U实现HTTP访问OPC UA Server
本文介绍利用CommGate X2HTTP-U实现HTTP访问OPC UA Server。CommGate X2HTTP是宁波科安网信开发的网关软件,软件可以登录到网信智汇(wangxinzhihui.com)下载。 【案例】如下图所示,实现上位机通过HTTP来获取OPC UA Server的数据。 【解决方案】设置网关机…...
模拟经营类游戏是怎么开发的?
模拟经营类游戏开发是一个充满挑战但也充满乐趣的领域。下面是一些步骤和关键考虑因素,可以帮助您开始开发自己的模拟经营游戏: 明确游戏概念: 确定游戏开发的主题和类型,例如城市建设、农场经营、餐厅经营等。 制定一个引人入胜…...
基于JAVA+SSM+微信小程序+MySql的图书捐赠管理系统设计与实现
✌全网粉丝20W,csdn特邀作者、博客专家、CSDN新星计划导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取项目下载方式🍅 一、项目背景介绍: 在当今社会࿰…...
软件设计模式系列之六——单例模式
1 模式的定义 单例模式(Singleton Pattern)是一种常见的创建型设计模式,其主要目的是确保一个类只有一个实例,并提供一个全局访问点来获取该实例。这意味着无论何时何地,只要需要该类的实例,都会返回同一个…...
verdi dump状态机的波形时直接显示状态名
前段时间看到别人用verdi看状态机的波形时,可以显示定义的状态参数,觉得很有意思,特地学习了一下 通常拉出状态机信号的波形是下面这样的 这种信号,我们要想知道每个数值代表的状态,还需要跟定义的parameter比对 像这…...
代码随想录算法训练营19期第53天
1143.最长公共子序列 视频讲解:动态规划子序列问题经典题目 | LeetCode:1143.最长公共子序列_哔哩哔哩_bilibili 代码随想录 初步思路:动态规划。 总结: dp[i][j] :长度为[0, i - 1]的字符串A与长度为[0, j - 1]…...
基于算法竞赛的c++编程(28)结构体的进阶应用
结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...
JavaSec-RCE
简介 RCE(Remote Code Execution),可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景:Groovy代码注入 Groovy是一种基于JVM的动态语言,语法简洁,支持闭包、动态类型和Java互操作性,…...
Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...
遍历 Map 类型集合的方法汇总
1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...
理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
大数据零基础学习day1之环境准备和大数据初步理解
学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 (1)设置网关 打开VMware虚拟机,点击编辑…...
Java - Mysql数据类型对应
Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...
cf2117E
原题链接:https://codeforces.com/contest/2117/problem/E 题目背景: 给定两个数组a,b,可以执行多次以下操作:选择 i (1 < i < n - 1),并设置 或,也可以在执行上述操作前执行一次删除任意 和 。求…...
MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...
从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)
设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile,新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...
