分类预测 | Matlab实现基于LFDA-SVM局部费歇尔判别数据降维结合支持向量机的多输入分类预测
分类预测 | Matlab实现基于LFDA-SVM局部费歇尔判别数据降维结合支持向量机的多输入分类预测
目录
- 分类预测 | Matlab实现基于LFDA-SVM局部费歇尔判别数据降维结合支持向量机的多输入分类预测
- 效果一览
- 基本介绍
- 程序设计
- 参考资料
效果一览





基本介绍
基于局部费歇尔判别数据降维的LFDA-SVM的二分类及多分类建模做多特征输入单输出的二分类及多分类模型。
程序内注释详细,直接替换数据就可以用。
程序语言为matlab。
程序可出分类效果图,降维展示图,混淆矩阵图。
想要的私聊我吧。
PS:以下效果图为测试数据的效果图,主要目的是为了显示程序运行可以出的结果图,具体预测效果以个人的具体数据为准。
程序设计
- 完整源码和数据下载私信博主回复** Matlab实现基于LFDA-SVM局部费歇尔判别数据降维结合支持向量机的多输入分类预测**。
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 清空环境变量
clc;
clear;
warning off
close all
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 添加路径
addpath("Toolbox\")
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 读取数据
res = xlsread('数据集.xlsx');
%% 性能评价
error1 = sum((T_sim1' == T_train)) / M * 100 ;
error2 = sum((T_sim2' == T_test )) / N * 100 ;
%-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['准确率=' num2str(error1) '%']};
title(string)
gridfigure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['准确率=' num2str(error2) '%']};
title(string)
grid
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 混淆矩阵
if flag_conusion == 1figurecm = confusionchart(T_train, T_sim1);cm.Title = 'Confusion Matrix for Train Data';cm.ColumnSummary = 'column-normalized';cm.RowSummary = 'row-normalized';figurecm = confusionchart(T_test, T_sim2);cm.Title = 'Confusion Matrix for Test Data';cm.ColumnSummary = 'column-normalized';cm.RowSummary = 'row-normalized';
end
参考资料
[1] https://download.csdn.net/download/kjm13182345320/87899283?spm=1001.2014.3001.5503
[2] https://download.csdn.net/download/kjm13182345320/87899230?spm=1001.2014.3001.5503
相关文章:
分类预测 | Matlab实现基于LFDA-SVM局部费歇尔判别数据降维结合支持向量机的多输入分类预测
分类预测 | Matlab实现基于LFDA-SVM局部费歇尔判别数据降维结合支持向量机的多输入分类预测 目录 分类预测 | Matlab实现基于LFDA-SVM局部费歇尔判别数据降维结合支持向量机的多输入分类预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 基于局部费歇尔判别数据降维的L…...
Say0l的安全开发-代理扫描工具-Sayo-proxyscan【红队工具】
写在前面 终于终于,安全开发也练习一年半了,有时间完善一下项目,写写中间踩过的坑。 安全开发的系列全部都会上传至github,欢迎使用和star。 工具链接地址 https://github.com/SAY0l/Sayo-proxyscan 工具简介 SOCKS4/SOCKS4…...
使用FFmpeg+ubuntu系统转化flac无损音频为mp3
功能需求如上题,我们来具体的操作一下: 1.先在ubuntu上面安装FFmpeg:sudo apt install ffmpeg 2.进入有flac音频文件的目录使用下述命令: ffmpeg -i test.FLAC -c:a libmp3lame -q:a 2 output.mp3 3.如果没有什么意外的话,你就能看到你的文件夹里面已经有转化好的mp3文件了 批…...
I/O多路复用三种实现
一.select 实现 (1)select流程 基本流程是: 1. 先构造一张有关文件描述符的表; fd_set readfds 2. 清空表 FD_ZERO() 3. 将你关心的文件描述符加入到这…...
DataInputStream数据读取 Vs ByteBuffer数据读取的巨大性能差距
背景: 今天在查找一个序列化和反序列化相关的问题时,意外发现使用DataInputStream读取和ByteBuffer读取之间性能相差巨大,本文就来记录下这两者在读取整数类型时的性能差异,以便在平时使用的过程中引起注意 DataInputStream数据…...
org.apache.flink.table.api.TableException: Sink does not exists
FlinkSQL_1.12_用DDL实现Kafka到MySQL的数据传输_实现按照条件进行过滤写入MySQL_flink从kafka拉取数据并过滤数据写入mysql_旧城里的阳光的博客-CSDN博客 参考这篇文章,写了kafka到mysql的代码例子,因为自己改了表结构,运行下面代码&#x…...
【多线程】CAS 详解
CAS 详解 一. 什么是 CAS二. CAS 的应用1. 实现原子类2. 实现自旋锁 三. CAS 的 ABA 问题四. 相关面试题 一. 什么是 CAS CAS: 全称Compare and swap,字面意思:”比较并交换“一个 CAS 涉及到以下操作: 我们假设内存中的原数据 V,旧的预期值…...
卷积神经网络实现咖啡豆分类 - P7
🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 | 接辅导、项目定制🚀 文章来源:K同学的学习圈子 目录 环境步骤环境设置包引用全局设备对象 数据准备查看图像的信息制作数据集 模型设…...
C++之默认与自定义构造函数问题(二百一十七)
简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 人生格言: 人生…...
Docker从认识到实践再到底层原理(五)|Docker镜像
前言 那么这里博主先安利一些干货满满的专栏了! 首先是博主的高质量博客的汇总,这个专栏里面的博客,都是博主最最用心写的一部分,干货满满,希望对大家有帮助。 高质量博客汇总 然后就是博主最近最花时间的一个专栏…...
【Flowable】任务监听器(五)
前言 之前有需要使用到Flowable,鉴于网上的资料不是很多也不是很全也是捣鼓了半天,因此争取能在这里简单分享一下经验,帮助有需要的朋友,也非常欢迎大家指出不足的地方。 一、监听器 在Flowable中,我们可以使用监听…...
spring-kafka中ContainerProperties.AckMode详解
近期,我们线上遇到了一个性能问题,几乎快引起线上故障,后来仅仅是修改了一行代码,性能就提升了几十倍。一行代码几十倍,数据听起来很夸张,不过这是真实的数据,线上错误的配置的确有可能导致性能…...
【rpc】Dubbo和Zookeeper结合使用,它们的作用与联系(通俗易懂,一文理解)
目录 Dubbo是什么? 把系统模块变成分布式,有哪些好处,本来能在一台机子上运行,为什么还要远程调用 Zookeeper是什么? 它们进行配合使用时,之间的关系 服务注册 服务发现 动态地址管理 Dubbo是…...
ChatGPT的未来
随着人工智能的快速发展,ChatGPT作为一种自然语言生成模型,在各个领域都展现出了巨大的潜力。它不仅可以用于日常对话、创意助手和知识查询,还可以应用于教育、医疗、商业等各个领域,为人们带来更多便利和创新。 在教育领域&#…...
Pytorch模型转ONNX部署
开始以为会很困难,但是其实非常方便,下边分两步走:1. pytorch模型转onnx;2. 使用onnx进行inference 0. 准备工作 0.1 安装onnx 安装onnx和onnxruntime,onnx貌似是个环境。。倒是没有直接使用,onnxruntim…...
k8s优雅停服
在应用程序的整个生命周期中,正在运行的 pod 会由于多种原因而终止。在某些情况下,Kubernetes 会因用户输入(例如更新或删除 Deployment 时)而终止 pod。在其他情况下,Kubernetes 需要释放给定节点上的资源时会终止 po…...
面试题五:computed的使用
题记 大部分的工作中使用computed的频次很低的,所以今天拿出来一文对于computed进行详细的介绍,因为Vue的灵魂之一就是computed。 模板内的表达式非常便利,但是设计它们的初衷是用于简单运算的。在模板中放入太多的逻辑会让模板过重且难以维护…...
完美的分布式监控系统 Prometheus与优雅的开源可视化平台 Grafana
1、之间的关系 prometheus与grafana之间是相辅相成的关系。简而言之Grafana作为可视化的平台,平台的数据从Prometheus中取到来进行仪表盘的展示。而Prometheus这源源不断的给Grafana提供数据的支持。 Prometheus是一个开源的系统监控和报警系统,能够监…...
黑马JVM总结(九)
(1)StringTable_调优1 我们知道StringTable底层是一个哈希表,哈希表的性能是跟它的大小相关的,如果哈希表这个桶的个数比较多,元素相对分散,哈希碰撞的几率就会减少,查找的速度较快,…...
如何使用 RunwayML 进行创意 AI 创作
标题:如何使用 RunwayML 进行创意 AI 创作 介绍 RunwayML 是一个基于浏览器的人工智能创作工具,可让用户使用各种 AI 功能来生成图像、视频、音乐、文字和其他创意内容。RunwayML 的功能包括: * 图像生成:使用生成式对抗网络 (…...
反向工程与模型迁移:打造未来商品详情API的可持续创新体系
在电商行业蓬勃发展的当下,商品详情API作为连接电商平台与开发者、商家及用户的关键纽带,其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息(如名称、价格、库存等)的获取与展示,已难以满足市场对个性化、智能…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
1.3 VSCode安装与环境配置
进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件,然后打开终端,进入下载文件夹,键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...
学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1
每日一言 生活的美好,总是藏在那些你咬牙坚持的日子里。 硬件:OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写,"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...
mac 安装homebrew (nvm 及git)
mac 安装nvm 及git 万恶之源 mac 安装这些东西离不开Xcode。及homebrew 一、先说安装git步骤 通用: 方法一:使用 Homebrew 安装 Git(推荐) 步骤如下:打开终端(Terminal.app) 1.安装 Homebrew…...
nnUNet V2修改网络——暴力替换网络为UNet++
更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...
数学建模-滑翔伞伞翼面积的设计,运动状态计算和优化 !
我们考虑滑翔伞的伞翼面积设计问题以及运动状态描述。滑翔伞的性能主要取决于伞翼面积、气动特性以及飞行员的重量。我们的目标是建立数学模型来描述滑翔伞的运动状态,并优化伞翼面积的设计。 一、问题分析 滑翔伞在飞行过程中受到重力、升力和阻力的作用。升力和阻力与伞翼面…...
渗透实战PortSwigger靶场:lab13存储型DOM XSS详解
进来是需要留言的,先用做简单的 html 标签测试 发现面的</h1>不见了 数据包中找到了一个loadCommentsWithVulnerableEscapeHtml.js 他是把用户输入的<>进行 html 编码,输入的<>当成字符串处理回显到页面中,看来只是把用户输…...
Python网页自动化Selenium中文文档
1. 安装 1.1. 安装 Selenium Python bindings 提供了一个简单的API,让你使用Selenium WebDriver来编写功能/校验测试。 通过Selenium Python的API,你可以非常直观的使用Selenium WebDriver的所有功能。 Selenium Python bindings 使用非常简洁方便的A…...
DiscuzX3.5发帖json api
参考文章:PHP实现独立Discuz站外发帖(直连操作数据库)_discuz 发帖api-CSDN博客 简单改造了一下,适配我自己的需求 有一个站点存在多个采集站,我想通过主站拿标题,采集站拿内容 使用到的sql如下 CREATE TABLE pre_forum_post_…...
