【深度学习-注意力机制attention 在seq2seq中应用】
注意力机制
- 为什么需要注意力机制
- attention机制的架构总体设计
- 一、attention本身实现
- 评分函数
- attention在网络模型的应用-Bahdanau 注意力
- 加性注意力代码实现
为什么需要注意力机制

这是一个普通的seq2seq结构,用以实现机器对话,Encoder需要把一个输入的一个句子转化为一个最终的输出,上下文context vector,然后在Decoder中使用,但这里有些问题:
- 如果句子很长,这个向量很难包含sequence中最早输入的哪些词的信息,那么decoder的处理必然也缺失了这一部分。
- 对话的过程中,大部分情况下decoder第一个的输出应该关心的权重更应该是encoder的前半部分的输入,比如这里Yes,其实应该是对are you这样一个疑问的输出,但是这就要求decoder的预测的时候有区别的针对sequence的输入做输出,现在这个结构没办法实现这个功能。
你可能会想到LSTM或者GRU也是有memory记忆功能的,解决方案:
LSTM中的memory没有办法很大,假设它的memory的大小时K的话,就需要有一个K*K的矩阵,如果太大的memory,不仅计算量大,参数太多还会容易过拟合,因此不可行
attention机制就是用来解决这个问题,attention里面memory增加的话,参数并不会增加,一句话总结就是attention就是来解决长输入在decoder时,能够找到应该关注的输入部分的问题,它最初时从机器翻译发展的,后续也扩展到了其他领域
attention机制的架构总体设计

这就是总体的架构设计,输入a1…an,输出b1…bn 对应,注意这里的b考虑了所有的输入,这个输出带有对于每个输入的attention score,score越大,证明这个输入越重要,a在这里可以是输入,也可以是输入解码器后hidden layer的输出,那么中间蓝色框部分就是attention主体实现,它用来生成的b1到bn 。
举个例子:输入are you free tomorrow? 输出的时候Yes更关注的是are you,那这个的attention score就需要高一些
普通的seq2seq结构

带有注意力的seq2seq

在普通的seq2seq相比,解码器使用的上下文变量C’不再仅仅是编码器的输出,而是 注意力的输出
与普通的seq2seq模型对比下,带有注意力模型的修改就分为了两部分
1.attention本身的实现
2.attention应用到模型部分
以下详述这了两部分
一、attention本身实现
先不介绍内部的一些数学处理,attention的输出实际上是对某种输入的选择倾向
输入就是要被选择的数据和对应的查询线索
输出对要选择数据的权重
举个例子
输入:the dog is running across the grass
翻译:这个小狗正在穿越草地
解码翻译这 个 小 狗 这些词的时候,注意力应该放在the dog上,这时候我们给与the dog这些词更多的权重,这时候对于输入可能的权重就是0.5 0.5 0 0 0 0

在数学模型方面,
键key
查询Query
值 Value
要实现的是根据键和查询生成的线索,去计算对于值Value的倾向选择,数学表达是这样的:

这里的a(q, ki) 一般是经过一个评分函数映射成标量和然后一个softmax操作
这里可以形象的理解一下,比如下面三组数据:
| id | 体重->Q | 身高->K | 年龄-> V |
|---|---|---|---|
| 1 | 50 | 160 | 50 |
| 2 | 65 | 165 | 23 |
| 3 | 60 | 175 | 21 |
当输入体重K 63, 身高V 170,问现在的年龄大概是多少呢?
看到表中的信息,人脑会自然猜测年龄在23和21之间,也就是在id 2和3上权重比较高,0.6* 23 +0.4* 21,这个也接近于注意力的实质,其实是根据Q和V 做评分,用以对V加权取值,这些权重值,就是注意力。
a(q, k1) v1+ a(q, k2)v2
评分函数
评分函数实际有很多种,tanh, 经过一个线性变换,或者sin cos 、加 等等,目前业内没有最好的实践
attention在网络模型的应用-Bahdanau 注意力
很多的论文都涉及注意力的使用,这块的依据是比较早和出名的Bahdanau注意力讲解。
上文seq2se模型中讲过解码器的输入是编码器的输出(上下文变量)以及解码器输入,而在有注意力的网络模型中,这个上下文变成了注意力的输出,解码器示意:

其中的at,i 就是注意力权重的输出

时间步t’-1 解码器的隐状态是St’-1,也是所谓的查询
ht编码器隐状态,是键也是值
加性注意力代码实现
class AdditiveAttention(nn.Module):"""加性注意力实现"""def __init__(self, key_size, query_size, num_hiddens, dropout, **kwargs):super(AdditiveAttention, self).__init__(**kwargs)self.W_k = nn.Linear(key_size, num_hiddens, bias=False)self.W_q = nn.Linear(query_size, num_hiddens, bias=False)self.w_v = nn.Linear(num_hiddens, 1, bias=False)self.dropout = nn.Dropout(dropout)def forward(self, queries, keys, values, valid_lens):queries, keys = self.W_q(queries), self.W_k(keys)# 在维度扩展后,# queries的形状:(batch_size,查询的个数,1,num_hidden)# key的形状:(batch_size,1,“键-值”对的个数,num_hiddens)# 使用广播方式进行求和features = queries.unsqueeze(2) + keys.unsqueeze(1)features = torch.tanh(features)# self.w_v仅有一个输出,因此从形状中移除最后那个维度。# scores的形状:(batch_size,查询的个数,“键-值”对的个数)scores = self.w_v(features).squeeze(-1)# 这部分主要是为了遮蔽填充项,理解注意力上的时候可以先忽略它self.attention_weights = masked_softmax(scores, valid_lens)# values的形状:(batch_size,“键-值”对的个数,值的维度)return torch.bmm(self.dropout(self.attention_weights), values)
相关文章:
【深度学习-注意力机制attention 在seq2seq中应用】
注意力机制 为什么需要注意力机制attention机制的架构总体设计一、attention本身实现评分函数 attention在网络模型的应用-Bahdanau 注意力加性注意力代码实现 为什么需要注意力机制 这是一个普通的seq2seq结构,用以实现机器对话,Encoder需要把一个输入的…...
详解混合类型文件(Polyglot文件)的应用生成与检测
1. 引入 混合类型文件(Polyglot文件),是指一个文件,既可以是合法的A类型,也可以是合法的B类型。 比如参考3中的文件,是一个html文件,可以用浏览器正常打开;它也是一个一个.jar文件&…...
QT之QTableView的简介
QT之QTableView的简介 QTableView 是 Qt 框架中的一个类,用于显示和编辑表格数据。它提供了一个灵活的模型/视图架构,允许用户以不同的方式显示和编辑数据。 以下是 QTableView 的一些常用函数及其用法: 1)QTableView(QWidget *pa…...
学习记忆——宫殿篇——记忆宫殿——记忆桩——知识讲解
类比 假设这些桩子好比不同的交通工具,每一种交通工具都可以助我们到达目的地,那举现在就根据你的时间以及现实情况,选择最合适自己的交通工具即可,重点在于你要熟悉每种交通工具的用途不区别。桩子也是如此,把所有的桩…...
Python lambda匿名函数
视频版教程 Python3零基础7天入门实战视频教程 前面我们所学的函数定义,都是有函数名的。 我们现在学的lambda函数是没有名称的,也就是匿名函数。 我们在只需要一次性使用的函数的时候,就可以用lambda匿名函数,简单方便快捷。 …...
成绩统计(蓝桥杯)
成绩统计 题目描述 小蓝给学生们组织了一场考试,卷面总分为 100 分,每个学生的得分都是一个 0 到 100 的整数。 如果得分至少是 60 分,则称为及格。如果得分至少为 85 分,则称为优秀。 请计算及格率和优秀率,用百分数…...
ETL与ELT理解
ETL ETL( Extract-Transform-Load),用来描述将数据从来源端经过抽取(Extract)、转换(Transform)、加载(Load)至目的端的过程。ETL模式适用于小数据量集。如果在转换过程…...
IntelliJ IDEA 2023 年下载、安装教程、好用插件推荐
文章目录 下载与安装IDEA常用插件推荐Alibaba Java Coding Guidelines(阿里巴巴Java开发规约)Key Promoter X(IDEA快捷键提示)Translation(翻译插件)Save Actions(优化保存插件)Codo…...
下载HTMLTestRunner并修改
目录 一. 下载HTMLTestRunner 二. 修改HTMLTestRunner 1. 修改内容 2. 修改原因 一. 下载HTMLTestRunner 下载报告模板地址:http://tungwaiyip.info/software/HTMLTestRunner.html 下载模块: 二. 修改HTMLTestRunner 将修改后的模块放到python安装目录下的..…...
C#回调函数学习1
回调函数(Callback Function)是一种函数指针,它指向的是由用户自己定义的回调函数。我们将这个回调函数的指针作为参数传递给另外一个函数,在这个函数工作完成后,它将通过这个回调函数的指针来回调通知调用者处理结果。…...
leetcode 232 用栈实现队列
请你仅使用两个栈实现先入先出队列。队列应当支持一般队列支持的所有操作(push、pop、peek、empty): 实现 MyQueue 类: void push(int x) 将元素 x 推到队列的末尾int pop() 从队列的开头移除并返回元素int peek() 返回队列开头…...
element UI表单验证,自定义验证规则
validator 可以为指定字段自定义验证函数——这就相当于把前边配置的东西用js按照以前的方式编写验证逻辑了。虽然麻烦点,但是能实现比较复杂的业务逻辑判断。 <el-form-itemlabel"中奖概率"prop"rate":rules"[{ required: true, mes…...
redis 主存复制
1. 前言 Redis的持久化机制,它很好的解决了单台Redis服务器由于意外情况导致Redis服务器进程退出或者Redis服务器宕机而造成的数据丢失问题。 在一定程度上保证了数据的安全性,即便是服务器宕机的情况下,也可以保证数据的丢失非常少。 通常…...
Unity Shader顶点数据疑问
1)Unity Shader顶点数据疑问 2)Unity 2018发布在iOS 16.3偶尔出现画面不动的问题 3)安卓游戏启动后提示“应用程序异常” 这是第352篇UWA技术知识分享的推送,精选了UWA社区的热门话题,涵盖了UWA问答、社区帖子等技术知…...
java写一个用于生成雪花id的工具类
我们创建一个类 叫 SnowflakeIdGenerator 作为生成雪花id的工具类 然后 编写代码如下 public class SnowflakeIdGenerator {private static final long START_TIMESTAMP 1609459200000L; // 设置起始时间戳,可以根据需要进行调整private static final long WORKER…...
淘宝开店装修教程 (2023新版)
一、下载千牛 1. 浏览器打开淘宝 https://www.taobao.com/ 2. 进入 - 千牛卖家中心 3. 进入 - 关于千牛 4. 下载千牛 5. 下载页面 6. 下载安装桌面 二、登录千牛 1. 登录页面 2. 进入 - 千牛工作台 三、pc店铺装修 1. 进入 - pc店铺 2. 进入 - 装修页面 3. 删除没用的模块 从…...
Python傅立叶变换
1. 什么是傅里叶变换? 在数学中,变换技术用于将函数映射到与其原始函数空间不同的函数空间。傅里叶变换时也是一种变换技术,它可以将函数从时域空间转换到频域空间。例如以音频波为例,傅里叶变换可以根据其音符的音量和频率来表示…...
MATLAB向量化编程基础精讲教程
向量化编程是MATLAB中一种重要的编程技术,通过使用向量和矩阵运算代替循环,可以提高代码的执行效率和可读性。本文将介绍MATLAB向量化编程的基础知识,并提供多个案例代码,帮助读者理解和应用向量化编程。 一、向量化编程基础知识…...
【非对称加密算法】RSA算法
一、非对称加密算法 非对称加密算法使用了两个不同的密钥:公钥和私钥。公钥是公开的,可以被任何人使用,而私钥是只有特定的人能够使用的。这种算法的加密和解密过程使用不同的密钥,因此称为非对称加密算法。 在非对称加密算法中…...
【滑动窗口】438. 找到字符串中所有字母异位词
438. 找到字符串中所有字母异位词 滑动窗口解法 创建两个Map 一个记录实际需要的有效字符 另一个记录窗口内的有效字符个数初始化need每次遍历一个字符 判断是不是有效字符 如果是 更新window 另外判断window中有效字符的个数是不是等于need中有效字符的个数 如果是更新valid…...
谷歌浏览器插件
项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...
7.4.分块查找
一.分块查找的算法思想: 1.实例: 以上述图片的顺序表为例, 该顺序表的数据元素从整体来看是乱序的,但如果把这些数据元素分成一块一块的小区间, 第一个区间[0,1]索引上的数据元素都是小于等于10的, 第二…...
【项目实战】通过多模态+LangGraph实现PPT生成助手
PPT自动生成系统 基于LangGraph的PPT自动生成系统,可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析:自动解析Markdown文档结构PPT模板分析:分析PPT模板的布局和风格智能布局决策:匹配内容与合适的PPT布局自动…...
2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面
代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口(适配服务端返回 Token) export const login async (code, avatar) > {const res await http…...
Python爬虫(一):爬虫伪装
一、网站防爬机制概述 在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类: 身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度…...
linux 下常用变更-8
1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行,YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID: YW3…...
《基于Apache Flink的流处理》笔记
思维导图 1-3 章 4-7章 8-11 章 参考资料 源码: https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...
【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)
1.获取 authorizationCode: 2.利用 authorizationCode 获取 accessToken:文档中心 3.获取手机:文档中心 4.获取昵称头像:文档中心 首先创建 request 若要获取手机号,scope必填 phone,permissions 必填 …...
力扣-35.搜索插入位置
题目描述 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...
中医有效性探讨
文章目录 西医是如何发展到以生物化学为药理基础的现代医学?传统医学奠基期(远古 - 17 世纪)近代医学转型期(17 世纪 - 19 世纪末)现代医学成熟期(20世纪至今) 中医的源远流长和一脉相承远古至…...
