Matlab--微积分问题的计算机求解
目录
1.单变量函数的极限问题
1.1.公式例子
1.2.对应例题 1
2.多变量函数的极限问题
3.函数导数的解析解
4.多元函数的偏导数
5.Jacobian函数
6.Hessian矩阵
7.隐函数的偏导
8.不定积分问题的求解
9.定积分的求解问题
10. 多重积分的问题求解
1.单变量函数的极限问题
1.1.公式例子
%%
%3.1.1.单变量函数的极限
%直接趋近
syms x;
y=2*x+2;
L=limit(y,x,2)
%左右趋近
L1=limit(y,x,2,'left')
L2=limit(y,x,2,'right')
1.2.对应例题 1
%%
%例题1
syms x;
y=(exp(x^3)-1)/(1-cos(sqrt(x-sin(x))))
limit(y,x,0,'right')
1.3. 对应例题2
%%
%例题2
syms t;
f=tan(t);
L1=limit(f,t,pi/2,'left')
L2=limit(f,t,pi/2,'right')
%L1 =Inf L2 =-Inf
2.多变量函数的极限问题
%多变量函数的极限
%需要嵌套使用limit()函数
%L=limit(limit(f,y,y0),x,x0)
syms x y a;
f=exp(-1/(y^2+x^2))*sin(x)^2/x^2*(1+1/y^2)^(x+a^2*y^2)
L=limit(limit(f,x,1/sqrt(y)),y,inf)
3.函数导数的解析解
%%
%函数导数的解析解
%函数的导数和高阶导数
%y=diff(fun,x) && y=diff(fun,x,n)
syms x;
f=sin(x)/(x^2+4*x+3);
f1=diff(f)
x1=0:0.01:5;
y=subs(f,x,x1);
y1=subs(f1,x,x1);
plot(x1,y,x1,y1,':')
saveas(gcf,[ 'C:\Users\Zeng Zhong Yan\Desktop\MATLAB\matlab_code','matalb2', '.png']);
4.多元函数的偏导数
%%
%多元函数的偏导数
%f=diff(diff(f,x,m),y,n)
%f=diff(diff(f,y,n),x,m)
%例题3.8
syms x y;
z=(x^2-2*x)*exp(-x^2-y^2-x*y);
zx=simplify(diff(z,x)),
zy=diff(z,y)[x0,y0]=meshgrid(-3:.2:3,-2:0.2:2);
z=(x0.^2-2*x0).*exp(-x0.^2-y0.^2-x0.*y0);
surf(x0,y0,z),
axis([-3 3 -2 2 -0.7 1.5])
saveas(gcf,[ 'C:\Users\Zeng Zhong Yan\Desktop\MATLAB\','偏导数', '.png']);
对应例题:
%%
%例题
syms x y z;
f=sin(x^2*y)*exp(-x^2*y-z^2);
f4=diff(diff(diff(f,x,2),y,1),z,1);
f4=simplify(f4)
5.Jacobian函数
%%
%Jacobian()函数
syms r theta phi
x=r*sin(theta)*cos(phi);
y=r*sin(theta)*sin(phi);
z=r*cos(theta);
J=jacobian([x;y;z],[r theta phi])
6.Hessian矩阵
%%
%Hessian偏导数矩阵
%Hessian矩阵就是两次的雅可比矩阵
H=jacobian(jacobian(f,x),x)
对应例题:
%%
%Hessian矩阵例题
syms x y;
f=(x^2-2*x)*exp(-x^2-y^2-x*y);
H=jacobian(jacobian(f,[x,y]),[x,y])
7.隐函数的偏导
%%
%隐函数的偏导数
%已知f(x1,x2,x3....x4)=0求解偏导数
F=-diff(f,xj)/diff(f,xi)
对应例题:
%%
%隐函数求导例题
syms x y;
f=(x^2-2*x)*exp(-x^2-y^2-x*y);
d=-diff(f,x)/diff(f,y);
d=simplify(d)
8.不定积分问题的求解
%%
%不定积分的求解
F=int(fun,x);
%多重嵌套
%F=int(.......int(fun,x))
对应例题:
%%
%不定积分例题
syms x;
y=sin(x)/(x^2+4*x+3);
y1=diff(y);
y0=int(y1);
y1,y0
y4=diff(y,4);
y0=int(int(int(int(y4))))
9.定积分的求解问题
%%
%定积分与无穷运算
I=int(fun,x,a,b);
I=int(fun,x,a,inf);
对应例题1:
%%
syms x;
y=exp(-x^2/2)
I1=int(y,x,0,1.5)
vpa(I1,70)
I1=int(y,x,0,inf)
对应例题2:
%%
%定积分例题
f=(-2*x^2+1)/(2*x^2-3*x+1)^2
I=simplify(int(f,x,cos(t),exp(-2*t)))
10. 多重积分的问题求解
%%
%多重积分的matlab问题求解
%积分公式差不多,只要注意积分的顺序
syms x y z
k=4*x*z*exp(-x^2*y-z^2);
int(int(int(k,x,0,2),y,0,pi),z,0,pi)
%ans =-(exp(-pi^2) - 1)*(eulergamma + log(4*pi)
相关文章:

Matlab--微积分问题的计算机求解
目录 1.单变量函数的极限问题 1.1.公式例子 1.2.对应例题 1 2.多变量函数的极限问题 3.函数导数的解析解 4.多元函数的偏导数 5.Jacobian函数 6.Hessian矩阵 7.隐函数的偏导 8.不定积分问题的求解 9.定积分的求解问题 10. 多重积分的问题求解 1.单变量函数的极限问题 …...

GRU实现时间序列预测(PyTorch版)
💥项目专栏:【深度学习时间序列预测案例】零基础入门经典深度学习时间序列预测项目实战(附代码数据集原理介绍) 文章目录 前言一、基于PyTorch搭建GRU模型实现风速时间序列预测二、时序数据集的制作三、数据归一化四、数据集加载器…...
文本框粘贴时兼容Unix、Mac换行符的方法源码
本篇文章属于《518抽奖软件开发日志》系列文章的一部分。 我在开发《518抽奖软件》(www.518cj.net)的时候,要在文本框粘贴从别处复制来的名单。发现一个问题,就是一些Unix传过来的多行文本,粘贴后都变成了一行。原来&a…...

2023年华为杯研究生数学建模竞赛辅导
2023年华为杯研究生数学建模竞赛辅导 各研究生培养单位: 中国研究生数学建模竞赛作为教育部学位管理与研究生教育司指导,中国学位与研究生教育学会、中国科协青少年科技中心主办的“中国研究生创新实践系列大赛”主题赛事之一,是一项面向在校…...

post更新,put相当于删除重新增一条
索引数据 //删除后新增 PUT my_dynamic_temp/_doc/1 { “name”:“test”, “class”:“1204” } //覆盖更新 POST my_dynamic_temp/_update/1 { “doc”: { “name”:“test”, “class”:“1203”, “pernum”:“998” } }...
python责任链模式
责任链模式是一种行为设计模式,它允许你将请求沿着处理者链进行传递,直到有一个处理者能够处理它为止。在Python中,你可以使用多线程来实现责任链模式的框架。 首先,你需要定义一个基础的处理者类,它包含处理请求的方…...

大数据技术准备
Hbase:HBase 底层原理详解(深度好文,建议收藏) - 腾讯云开发者社区-腾讯云 Hbase架构图 同一个列族如果有多个store,那么这些store在不同的region Hbase写流程(读比写慢) MemStore Flush Hbas…...

【力扣周赛】第 362 场周赛(⭐差分匹配状态压缩DP矩阵快速幂优化DPKMP)
文章目录 竞赛链接Q1:2848. 与车相交的点解法1——排序后枚举解法2——差分数组⭐差分数组相关题目列表📕1094. 拼车1109. 航班预订统计2381. 字母移位 II2406. 将区间分为最少组数解法1——排序贪心优先队列解法2——差分数组 2772. 使数组中的所有元素…...

四大函数式接口(重点,必须掌握)
新时代程序员必须要会的 :lambda表达式、链式编程、函数式接口、Stream流式计算 什么是函数式接口 1.函数型接口 package com.kuang.function;import java.util.function.Function;/*** Function函数型接口 有一个输入参数,有一个输出* 只要是函数式接口…...

2023Web前端逻辑面试题
1、现有9个小球,已知其中一个球比其它的重,如何只用天平称2次就找出该球? ①把9个球分成三份,三个一份; ②拿出其中两份进行称量;会分为两种情况 若拿出的两份小球称量结果,重量相等;…...
uniapp中git忽略node_modules,unpackage文件
首先在当前项目的命令行新建.gitignore文件: touch .gitignore再在编辑器中打开该文件,并在该文件中加入需要忽略的文件名: node_modules/ .project unpackage/ .DS_Store 提示:如果以前提交过unpackage文件的话,需…...

Json-Jackson和FastJson
狂神: 测试Jackson 纯Java解决日期格式化 设置ObjectMapper FastJson: 知乎:Jackson使用指南 1、常见配置 方式一:yml配置 spring.jackson.date-format指定日期格式,比如yyyy-MM-dd HH:mm:ss,或者具体的…...

RK3588 点亮imx586摄像头
一.硬件原理图 mipi摄像头硬件确认点: 1.供电:5V,2.8V,1.2V,1.8V,reset脚(硬拉3.3,上电的时候从低到高),pwron脚外接 3.3V。 2,时钟:MCLKOUT是2…...

C++---继承
继承 前言继承的概念及定义继承的概念继承定义继承关系和访问限定符 基类和派生类对象赋值转换继承中的作用域派生类的默认成员函数继承与友元继承与静态成员**多重继承**多继承下的类作用域菱形继承虚继承使用虚基类 支持向基类的常规类型转换 前言 在需要写Father类和Mother…...

使用新版Maven-mvnd快速构建项目
目前我们项目的构建方式多数是 maven、gradle,但是 maven 相对 gradle 来说,构建速度较慢,特别是模块相对较多的时候,构建速度更加明显。但是我们将项目由 maven 替换为 gradle 相对来说会比较麻烦,成本较高。于是我们…...

【ICASSP 2023】ST-MVDNET++论文阅读分析与总结
主要是数据增强的提点方式。并不能带来idea启发,但对模型性能有帮助 Challenge: 少有作品应用一些全局数据增强,利用ST-MVDNet自训练的师生框架,集成了更常见的数据增强,如全局旋转、平移、缩放和翻转。 Contributi…...

MySQL 面试题——MySQL 基础
目录 1.什么是 MySQL?有什么优点?2.MySQL 中的 DDL 与 DML 是分别指什么?3.✨数据类型 varchar 与 char 有什么区别?4.数据类型 BLOB 与 TEXT 有什么区别?5.DATETIME 和 TIMESTAMP 的异同?6.✨MySQL 中 IN …...

JDK9特性——概述
文章目录 引言JDK9特性概述JDK9的改变JDK和JRE目录变化总结 引言 JAVA8 及之前,版本都是特性驱动的版本更新,有重大的特性产生,然后进行更新。 JAVA9开始,JDK开始以时间为驱动进行更新,以半年为周期,到时…...

征战开发板从无到有(三)
接上一篇,翘首已盼的PCB板子做好了,管脚约束信息都在PCB板上体现出来了,很满意,会不会成为爆款呢,嘿嘿,来,先看看PCB裸板美图 由于征战开发板电路功能兼容小梅哥ACX720,大家可以直…...

Linux设备树详细学习笔记
参考文献 参考视频 开发板及程序 原子mini 设备树官方文档 设备树的基本概念 DT:Device Tree //设备树 FDT: Flattened Device Tree //开放设备树,起源于OpenFirmware (所以后续会见到很多OF开头函数) dts: device tree source的缩写 //设备树源码 dtsi: device …...
Vue记事本应用实现教程
文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...
React Native 导航系统实战(React Navigation)
导航系统实战(React Navigation) React Navigation 是 React Native 应用中最常用的导航库之一,它提供了多种导航模式,如堆栈导航(Stack Navigator)、标签导航(Tab Navigator)和抽屉…...
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...
SciencePlots——绘制论文中的图片
文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...
可靠性+灵活性:电力载波技术在楼宇自控中的核心价值
可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...

关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...

Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...
【磁盘】每天掌握一个Linux命令 - iostat
目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...
sqlserver 根据指定字符 解析拼接字符串
DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...