LeNet-5
目录
一、知识点
二、代码
三、查看卷积层的feature map
1. 查看每层信息
2. show_featureMap.py
背景:LeNet-5是一个经典的CNN,由Yann LeCun在1998年提出,旨在解决手写数字识别问题。

一、知识点
1. iter()+next()
iter():返回迭代器
next():使用next()来获取下一条数据
data = [1, 2, 3]
data_iter = iter(data)
print(next(data_iter)) # 1
print(next(data_iter)) # 2
print(next(data_iter)) # 3
2. enumerate
enumerate(sequence,[start=0]) 函数用于将一个可遍历的数据对象组合为一个索引序列,同时列出数据和数据下标,一般用在 for 循环当中。
start--下标起始位置的值。
data = ['zs', 'ls', 'ww']
print(list(enumerate(data)))
# [(0, 'zs'), (1, 'ls'), (2, 'ww')]
3. torch.no_grad()
在该模块下,所有计算得出的tensor的requires_grad都自动设置为False。
当requires_grad设置为False时,在反向传播时就不会自动求导了,可以节约存储空间。
4. torch.max(input,dim)
input -- tensor类型
dim=0 -- 行比较
dim=1 -- 列比较
import torchdata = torch.Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
x = torch.max(data, dim=0)
print(x)
# values=tensor([7., 8., 9.]),
# indices=tensor([2, 2, 2])
x = torch.max(data, dim=1)
print(x)
# values=tensor([3., 6., 9.]),
# indices=tensor([2, 2, 2])
5. torch.eq:对两个张量Tensor进行逐个元素的比较,若相同位置的两个元素相同,则返回True;若不同,返回False。
注意:item返回一个数。
import torchdata1 = torch.tensor([1, 2, 3, 4, 5])
data2 = torch.tensor([2, 3, 3, 9, 5])
x = torch.eq(data1, data2)
print(x) # tensor([False, False, True, False, True])
sum = torch.eq(data1, data2).sum()
print(sum) # tensor(2)
sum_item = torch.eq(data1, data2).sum().item()
print(sum_item) # 2
6. squeeze(input,dim)函数
squeeze(0):若第一维度值为1,则去除第一维度
squeeze(1):若第二维度值为2,则去除第二维度
squeeze(-1):去除最后维度值为1的维度
7. unsqueeze(input,dim)
增加大小为1的维度,即返回一个新的张量,对输入的指定位置插入维度 1且必须指明维度。
二、代码
model.py
import torch.nn as nn
import torch.nn.functional as Fclass LeNet(nn.Module):def __init__(self):super(LeNet, self).__init__()self.conv1 = nn.Conv2d(3, 16, 5) # output(16,28,28)self.pool1 = nn.MaxPool2d(2, 2) # output(16,14,14)self.conv2 = nn.Conv2d(16, 32, 5) # output(32,10,10)self.pool2 = nn.MaxPool2d(2, 2) # output(32,5,5)self.fc1 = nn.Linear(32 * 5 * 5, 120) # output:120self.fc2 = nn.Linear(120, 84) # output:84self.fc3 = nn.Linear(84, 10) # output:10def forward(self, x):x = F.relu(self.conv1(x))x = self.pool1(x)x = F.relu(self.conv2(x))x = self.pool2(x)x = x.view(-1, 32 * 5 * 5)x = F.relu(self.fc1(x))x = F.relu(self.fc2(x))x = self.fc3(x)return x
train.py
import torch
import torchvision
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transformsfrom model import LeNetdef main():# preprocess datatransform = transforms.Compose([# Converts a PIL Image or numpy.ndarray (H x W x C) in the range [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]transforms.ToTensor(),# (mean[1],...,mean[n])`` and std: ``(std[1],..,std[n])transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])# 训练集 如果数据集已经下载了,则download=Falsetrain_data = torchvision.datasets.CIFAR10('./data', train=True, transform=transform, download=False)train_loader = torch.utils.data.DataLoader(train_data, batch_size=36, shuffle=True, num_workers=0)# 验证集val_data = torchvision.datasets.CIFAR10('./data', train=False, download=False, transform=transform)val_loader = torch.utils.data.DataLoader(val_data, batch_size=10000, shuffle=False, num_workers=0)# 返回迭代器val_data_iter = iter(val_loader)val_image, val_label = next(val_data_iter)net = LeNet()loss_function = nn.CrossEntropyLoss()optimizer = optim.Adam(net.parameters(), lr=0.001)# loop over the dataset multiple timesfor epoch in range(5):epoch_loss = 0for step, data in enumerate(train_loader, start=0):# get the inputs from train_loader;data is a list of[inputs,labels]inputs, labels = data# 在处理每一个batch时并不需要与其他batch的梯度混合起来累积计算,因此需要对每个batch调用一遍zero_grad()将参数梯度设置为0optimizer.zero_grad()# 1.forwardoutputs = net(inputs)# 2.lossloss = loss_function(outputs, labels)# 3.backpropagationloss.backward()# 4.update x by optimizeroptimizer.step()# print statistics# 使用item()取出的元素值的精度更高epoch_loss += loss.item()# print every 500 mini-batchesif step % 500 == 499:with torch.no_grad():outputs = net(val_image)predict_y = torch.max(outputs, dim=1)[1] # [0]取每行最大值,[1]取每行最大值的索引val_accuracy = torch.eq(predict_y, val_label).sum().item() / val_label.size(0)print('[epoch:%d step:%5d] train_loss:%.3f test_accuracy:%.3f' % (epoch + 1, step + 1, epoch_loss / 500, val_accuracy))epoch_loss = 0print('Train finished!')sava_path = './model/LeNet.pth'torch.save(net.state_dict(), sava_path)if __name__ == '__main__':main()

predict.py
import torch
import torchvision.transforms as transforms
from PIL import Image
from model import LeNetdef main():transform = transforms.Compose([transforms.Resize((32, 32)),transforms.ToTensor(), # CHW格式transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']net = LeNet()net.load_state_dict(torch.load('./model/LeNet.pth'))image = Image.open('./predict/2.png') # HWC格式image = transform(image)image = torch.unsqueeze(image, dim=0) # 在第0维加一个维度 #[N,C,H,W] N:Batch批处理大小with torch.no_grad():outputs = net(image)predict = torch.max(outputs, dim=1)[1]print(classes[predict])if __name__ == '__main__':main()
2.png


三、查看卷积层的feature map
1. 查看每层信息
for i in net.children():print(i)
2. show_featureMap.py
import torch
import torch.nn as nn
from model import LeNet
import torchvision
import torchvision.transforms as transforms
from PIL import Image
import matplotlib.pyplot as pltdef main():transform = transforms.Compose([transforms.Resize((32, 32)),transforms.ToTensor(), # CHW格式transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])image = Image.open('./predict/2.png') # HWC格式image = transform(image)image = torch.unsqueeze(image, dim=0) # 在第0维加一个维度 #[N,C,H,W] N:Batch批处理大小net = LeNet()net.load_state_dict(torch.load('./model/LeNet.pth'))conv_weights = [] # 模型权重conv_layers = [] # 模型卷积层counter = 0 # 模型里有多少个卷积层# 1.将卷积层以及对应权重放入列表中model_children = list(net.children())for i in range(len(model_children)):if type(model_children[i]) == nn.Conv2d:counter += 1conv_weights.append(model_children[i].weight)conv_layers.append(model_children[i])outputs = []names = []for layer in conv_layers[0:]:# 2.每个卷积层对image进行计算image = layer(image)outputs.append(image)names.append(str(layer))# 3.进行维度转换print(outputs[0].shape) # torch.Size([1, 16, 28, 28]) 1-batch 16-channel 28-H 28-Wprint(outputs[0].squeeze(0).shape) # torch.Size([16, 28, 28]) 去除第0维# 将16颜色通道的feature map加起来,变为一张28×28的feature map,sum将所有灰度图映射到一张print(torch.sum(outputs[0].squeeze(0), 0).shape) # torch.Size([28, 28])processed_data = []for feature_map in outputs:feature_map = feature_map.squeeze(0) # torch.Size([16, 28, 28])gray_scale = torch.sum(feature_map, 0) # torch.Size([28, 28])# 取所有灰度图的平均值gray_scale = gray_scale / feature_map.shape[0]processed_data.append(gray_scale.data.numpy())# 4.可视化特征图figure = plt.figure()for i in range(len(processed_data)):x = figure.add_subplot(1, 2, i + 1)x.imshow(processed_data[i])x.set_title(names[i].split('(')[0])plt.show()if __name__ == '__main__':main()

相关文章:
LeNet-5
目录 一、知识点 二、代码 三、查看卷积层的feature map 1. 查看每层信息 2. show_featureMap.py 背景:LeNet-5是一个经典的CNN,由Yann LeCun在1998年提出,旨在解决手写数字识别问题。 一、知识点 1. iter()next() iter():…...
Anaconda bug
报错如下: DEBUG:urllib3.connectionpool:Starting new HTTPS connection (1): repo.anaconda.com:443 DEBUG:urllib3.connectionpool:Starting new HTTPS connection (1): repo.anaconda.com:443 DEBUG:urllib3.connectionpool:Starting new HTTPS connection (1):…...
xen-trap
Xen-Trap xen的虚拟化实现有一个很重要的机制就是tarp,中文可以暂且叫做陷入。在ARMv8中,trap就是异常等级的一个切换。 当发生trap的时候,就会进入设定好的异常向量表中,硬件自动判断属于哪种类型的异常。 一、异常处理 ARM…...
微服务架构介绍
系统架构的演变 1、技术架构发展历史时间轴 ①单机垂直拆分:应用间进行了解耦,系统容错提高了,也解决了独立应用发布的问题,存在单机计算能力瓶颈。 ②集群化负载均衡可有效解决单机情况下并发量不足瓶颈。 ③服务改造架构 虽然系…...
235. 二叉搜索树的最近公共祖先
给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。 百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己…...
DETR:End-to-End Object Detection with Transformers
代码:https://github.com/HuKai97/detr-annotations 论文:https://arxiv.org/pdf/2005.12872.pdf 参考视频:DETR 论文精读【论文精读】_哔哩哔哩_bilibili 团队:Meta AI 摘要 DETR 做目标检测任务既不需要proposal࿰…...
如何从第一性原则的原理分解数学问题
如何从第一性原则的原理分解数学问题 摘要:牛津大学入学考试题目展示了所有优秀数学家都使用的系统的第一原则推理,而GPT4仍然在这方面有困难 作者:Keith McNulty 我们中的许多人都熟悉直角三角形的边的规则。根据毕达哥拉斯定理,…...
实现strstr函数
一个字符串有没有在另一个字符串出现过 char* my_strstr(char* arr1, char* arr2) {char* cp;char* a1;char* a2;cp arr1;while (*cp){a1 cp;a2 arr2;while (*a1 *a2){a1;a2;}if (*a2 \0){return cp;}cp;}return NULL; } int main() {char arr1[] "abbbcdefgi"…...
C语言练习题解析(2)
💓博客主页:江池俊的博客⏩收录专栏:C语言刷题专栏👉专栏推荐:✅C语言初阶之路 ✅C语言进阶之路💻代码仓库:江池俊的代码仓库🎉欢迎大家点赞👍评论📝收藏⭐ 文…...
Element UI 表单验证规则动态失效问题
Element 版本:v2.15.3 问题背景 如下代码所示:有一个上传文件的 input 组件,在更新的时候,如果不上传文件表示不更新,如果要更新则点击 「重新上传」按钮将上传组件显示出来 <el-form ref"form" :mode…...
多线程并发篇
目录 1、线程生命周期 2、线程创建方式 3、Callable 与 Future 4、如何停止一个正在运行的线程 5、notify() 和 notifyAll() 的区别 6、sleep() 和 wait() 的区别 7、start() 和 run() 的区别 8、interrupted 和 isInterruptedd 的区别 9、CyclicBarrier 和 Count…...
pycharm-2023.1 closing project window stuck
pycharm-2023.1 closing project window stuck 问题描述 pycharm 切换项目/重启,一直卡在 closing project 原因分析 PyCharm 2023.1 issue - closing project window stuck (PyPIPackageUtil.lambda$parsePyPIListFromWeb) 解决方案 升级 pycharm 到 2023.3py…...
tkinter编写的打开csdn程序
目录 鬼畜tkinter简介程序代码解析现成总结鬼畜 看看你每次打开CSDN: 1.开机 2.打开浏览器 3.打开CSDN 4.等待 5.完成 我: 1.开机 2.点击%%%按钮 3.等待 4.完成 简单了不知道多少倍 上面的纯属鬼畜,下面正文!!! tkinter tkinter是一个用于创建图形用户界面(GUI)的Py…...
Vue3.2组件如何封装,以弹窗组件的封装为例
以前一直想,每次封装一个弹窗组件的时候,一直特别复杂,父传子,子传父,各种来回绕,来回修改。 一直想如何才能更加简化,但是一直没时间,今天终于抽时间出来封装了一下 本次封装简化…...
Vue知识系列(5)每天10个小知识点
目录 系列文章目录Vue知识系列(1)每天10个小知识点Vue知识系列(2)每天10个小知识点Vue知识系列(3)每天10个小知识点Vue知识系列(4)每天10个小知识点 知识点41.vue常用基本指令有哪些…...
Java基础题08——数组(查找下标所对应的值)
给定一个整数数组,输入一个值 n ,输出 n *在数组中的下标 **(*如果不存在输出 -1 ) 如:int[] arr {3, 2, 1, 4, 5}; 1 输入: 3 输出: 0 2. 输入: 6 输出: -1 int[] arr new int[]{3, 2, 1, 4,…...
LinkedList 源码分析
LinkedList 是一个基于双向链表实现的集合类。 LinkedList 插入和删除元素的时间复杂度 头部插入/删除:只需要修改头结点的指针即可完成插入/删除操作,因此时间复杂度为 O(1)。尾部插入/删除:只需要修改尾结点的指针即可完成插入/删除操作…...
跑步锻炼(蓝桥杯)
跑步锻练 题目描述 本题为填空题,只需要算出结果后,在代码中使用输出语句将所填结果输出即可。 小蓝每天都锻炼身体。 正常情况下,小蓝每天跑 1 千米。如果某天是周一或者月初(1 日),为了激励自己&#x…...
【SLAM】视觉SLAM简介
【SLAM】视觉SLAM简介 task04 主要了解了SLAM的主流框架,清楚VSALM中间接法与直接法的主要区别在什么地方,其各自的优势是什么,了解前端与后端的关系是什么 1.什么是SLAM 2.VSALM中间接法与直接法的主要区别在什么地方,其各自的…...
Visual Studio2019报错
1- Visual Studio2019报错 错误 MSB8036 找不到 Windows SDK 版本 10.0.19041.0的解决方法 小伙伴们在更新到Visual Studio2019后编译项目时可能遇到过这个错误:“ 错误 MSB8036 找不到 Windows SDK 版本 10.0.19041.0的解决方法”,但是我们明明安装了该…...
【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15
缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下: struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...
盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来
一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...
UDP(Echoserver)
网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...
《通信之道——从微积分到 5G》读书总结
第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...
WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成
厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...
成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战
在现代战争中,电磁频谱已成为继陆、海、空、天之后的 “第五维战场”,雷达作为电磁频谱领域的关键装备,其干扰与抗干扰能力的较量,直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器,凭借数字射…...
第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词
Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵,其中每行,每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid,其中有多少个 3 3 的 “幻方” 子矩阵&am…...
使用 SymPy 进行向量和矩阵的高级操作
在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...
永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器
一、原理介绍 传统滑模观测器采用如下结构: 传统SMO中LPF会带来相位延迟和幅值衰减,并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF),可以去除高次谐波,并且不用相位补偿就可以获得一个误差较小的转子位…...
十九、【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建
【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建 前言准备工作第一部分:回顾 Django 内置的 `User` 模型第二部分:设计并创建 `Role` 和 `UserProfile` 模型第三部分:创建 Serializers第四部分:创建 ViewSets第五部分:注册 API 路由第六部分:后端初步测…...
