LeNet-5
目录
一、知识点
二、代码
三、查看卷积层的feature map
1. 查看每层信息
2. show_featureMap.py
背景:LeNet-5是一个经典的CNN,由Yann LeCun在1998年提出,旨在解决手写数字识别问题。

一、知识点
1. iter()+next()
iter():返回迭代器
next():使用next()来获取下一条数据
data = [1, 2, 3]
data_iter = iter(data)
print(next(data_iter)) # 1
print(next(data_iter)) # 2
print(next(data_iter)) # 3
2. enumerate
enumerate(sequence,[start=0]) 函数用于将一个可遍历的数据对象组合为一个索引序列,同时列出数据和数据下标,一般用在 for 循环当中。
start--下标起始位置的值。
data = ['zs', 'ls', 'ww']
print(list(enumerate(data)))
# [(0, 'zs'), (1, 'ls'), (2, 'ww')]
3. torch.no_grad()
在该模块下,所有计算得出的tensor的requires_grad都自动设置为False。
当requires_grad设置为False时,在反向传播时就不会自动求导了,可以节约存储空间。
4. torch.max(input,dim)
input -- tensor类型
dim=0 -- 行比较
dim=1 -- 列比较
import torchdata = torch.Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
x = torch.max(data, dim=0)
print(x)
# values=tensor([7., 8., 9.]),
# indices=tensor([2, 2, 2])
x = torch.max(data, dim=1)
print(x)
# values=tensor([3., 6., 9.]),
# indices=tensor([2, 2, 2])
5. torch.eq:对两个张量Tensor进行逐个元素的比较,若相同位置的两个元素相同,则返回True;若不同,返回False。
注意:item返回一个数。
import torchdata1 = torch.tensor([1, 2, 3, 4, 5])
data2 = torch.tensor([2, 3, 3, 9, 5])
x = torch.eq(data1, data2)
print(x) # tensor([False, False, True, False, True])
sum = torch.eq(data1, data2).sum()
print(sum) # tensor(2)
sum_item = torch.eq(data1, data2).sum().item()
print(sum_item) # 2
6. squeeze(input,dim)函数
squeeze(0):若第一维度值为1,则去除第一维度
squeeze(1):若第二维度值为2,则去除第二维度
squeeze(-1):去除最后维度值为1的维度
7. unsqueeze(input,dim)
增加大小为1的维度,即返回一个新的张量,对输入的指定位置插入维度 1且必须指明维度。
二、代码
model.py
import torch.nn as nn
import torch.nn.functional as Fclass LeNet(nn.Module):def __init__(self):super(LeNet, self).__init__()self.conv1 = nn.Conv2d(3, 16, 5) # output(16,28,28)self.pool1 = nn.MaxPool2d(2, 2) # output(16,14,14)self.conv2 = nn.Conv2d(16, 32, 5) # output(32,10,10)self.pool2 = nn.MaxPool2d(2, 2) # output(32,5,5)self.fc1 = nn.Linear(32 * 5 * 5, 120) # output:120self.fc2 = nn.Linear(120, 84) # output:84self.fc3 = nn.Linear(84, 10) # output:10def forward(self, x):x = F.relu(self.conv1(x))x = self.pool1(x)x = F.relu(self.conv2(x))x = self.pool2(x)x = x.view(-1, 32 * 5 * 5)x = F.relu(self.fc1(x))x = F.relu(self.fc2(x))x = self.fc3(x)return x
train.py
import torch
import torchvision
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transformsfrom model import LeNetdef main():# preprocess datatransform = transforms.Compose([# Converts a PIL Image or numpy.ndarray (H x W x C) in the range [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]transforms.ToTensor(),# (mean[1],...,mean[n])`` and std: ``(std[1],..,std[n])transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])# 训练集 如果数据集已经下载了,则download=Falsetrain_data = torchvision.datasets.CIFAR10('./data', train=True, transform=transform, download=False)train_loader = torch.utils.data.DataLoader(train_data, batch_size=36, shuffle=True, num_workers=0)# 验证集val_data = torchvision.datasets.CIFAR10('./data', train=False, download=False, transform=transform)val_loader = torch.utils.data.DataLoader(val_data, batch_size=10000, shuffle=False, num_workers=0)# 返回迭代器val_data_iter = iter(val_loader)val_image, val_label = next(val_data_iter)net = LeNet()loss_function = nn.CrossEntropyLoss()optimizer = optim.Adam(net.parameters(), lr=0.001)# loop over the dataset multiple timesfor epoch in range(5):epoch_loss = 0for step, data in enumerate(train_loader, start=0):# get the inputs from train_loader;data is a list of[inputs,labels]inputs, labels = data# 在处理每一个batch时并不需要与其他batch的梯度混合起来累积计算,因此需要对每个batch调用一遍zero_grad()将参数梯度设置为0optimizer.zero_grad()# 1.forwardoutputs = net(inputs)# 2.lossloss = loss_function(outputs, labels)# 3.backpropagationloss.backward()# 4.update x by optimizeroptimizer.step()# print statistics# 使用item()取出的元素值的精度更高epoch_loss += loss.item()# print every 500 mini-batchesif step % 500 == 499:with torch.no_grad():outputs = net(val_image)predict_y = torch.max(outputs, dim=1)[1] # [0]取每行最大值,[1]取每行最大值的索引val_accuracy = torch.eq(predict_y, val_label).sum().item() / val_label.size(0)print('[epoch:%d step:%5d] train_loss:%.3f test_accuracy:%.3f' % (epoch + 1, step + 1, epoch_loss / 500, val_accuracy))epoch_loss = 0print('Train finished!')sava_path = './model/LeNet.pth'torch.save(net.state_dict(), sava_path)if __name__ == '__main__':main()

predict.py
import torch
import torchvision.transforms as transforms
from PIL import Image
from model import LeNetdef main():transform = transforms.Compose([transforms.Resize((32, 32)),transforms.ToTensor(), # CHW格式transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']net = LeNet()net.load_state_dict(torch.load('./model/LeNet.pth'))image = Image.open('./predict/2.png') # HWC格式image = transform(image)image = torch.unsqueeze(image, dim=0) # 在第0维加一个维度 #[N,C,H,W] N:Batch批处理大小with torch.no_grad():outputs = net(image)predict = torch.max(outputs, dim=1)[1]print(classes[predict])if __name__ == '__main__':main()
2.png


三、查看卷积层的feature map
1. 查看每层信息
for i in net.children():print(i)
2. show_featureMap.py
import torch
import torch.nn as nn
from model import LeNet
import torchvision
import torchvision.transforms as transforms
from PIL import Image
import matplotlib.pyplot as pltdef main():transform = transforms.Compose([transforms.Resize((32, 32)),transforms.ToTensor(), # CHW格式transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])image = Image.open('./predict/2.png') # HWC格式image = transform(image)image = torch.unsqueeze(image, dim=0) # 在第0维加一个维度 #[N,C,H,W] N:Batch批处理大小net = LeNet()net.load_state_dict(torch.load('./model/LeNet.pth'))conv_weights = [] # 模型权重conv_layers = [] # 模型卷积层counter = 0 # 模型里有多少个卷积层# 1.将卷积层以及对应权重放入列表中model_children = list(net.children())for i in range(len(model_children)):if type(model_children[i]) == nn.Conv2d:counter += 1conv_weights.append(model_children[i].weight)conv_layers.append(model_children[i])outputs = []names = []for layer in conv_layers[0:]:# 2.每个卷积层对image进行计算image = layer(image)outputs.append(image)names.append(str(layer))# 3.进行维度转换print(outputs[0].shape) # torch.Size([1, 16, 28, 28]) 1-batch 16-channel 28-H 28-Wprint(outputs[0].squeeze(0).shape) # torch.Size([16, 28, 28]) 去除第0维# 将16颜色通道的feature map加起来,变为一张28×28的feature map,sum将所有灰度图映射到一张print(torch.sum(outputs[0].squeeze(0), 0).shape) # torch.Size([28, 28])processed_data = []for feature_map in outputs:feature_map = feature_map.squeeze(0) # torch.Size([16, 28, 28])gray_scale = torch.sum(feature_map, 0) # torch.Size([28, 28])# 取所有灰度图的平均值gray_scale = gray_scale / feature_map.shape[0]processed_data.append(gray_scale.data.numpy())# 4.可视化特征图figure = plt.figure()for i in range(len(processed_data)):x = figure.add_subplot(1, 2, i + 1)x.imshow(processed_data[i])x.set_title(names[i].split('(')[0])plt.show()if __name__ == '__main__':main()

相关文章:
LeNet-5
目录 一、知识点 二、代码 三、查看卷积层的feature map 1. 查看每层信息 2. show_featureMap.py 背景:LeNet-5是一个经典的CNN,由Yann LeCun在1998年提出,旨在解决手写数字识别问题。 一、知识点 1. iter()next() iter():…...
Anaconda bug
报错如下: DEBUG:urllib3.connectionpool:Starting new HTTPS connection (1): repo.anaconda.com:443 DEBUG:urllib3.connectionpool:Starting new HTTPS connection (1): repo.anaconda.com:443 DEBUG:urllib3.connectionpool:Starting new HTTPS connection (1):…...
xen-trap
Xen-Trap xen的虚拟化实现有一个很重要的机制就是tarp,中文可以暂且叫做陷入。在ARMv8中,trap就是异常等级的一个切换。 当发生trap的时候,就会进入设定好的异常向量表中,硬件自动判断属于哪种类型的异常。 一、异常处理 ARM…...
微服务架构介绍
系统架构的演变 1、技术架构发展历史时间轴 ①单机垂直拆分:应用间进行了解耦,系统容错提高了,也解决了独立应用发布的问题,存在单机计算能力瓶颈。 ②集群化负载均衡可有效解决单机情况下并发量不足瓶颈。 ③服务改造架构 虽然系…...
235. 二叉搜索树的最近公共祖先
给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。 百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己…...
DETR:End-to-End Object Detection with Transformers
代码:https://github.com/HuKai97/detr-annotations 论文:https://arxiv.org/pdf/2005.12872.pdf 参考视频:DETR 论文精读【论文精读】_哔哩哔哩_bilibili 团队:Meta AI 摘要 DETR 做目标检测任务既不需要proposal࿰…...
如何从第一性原则的原理分解数学问题
如何从第一性原则的原理分解数学问题 摘要:牛津大学入学考试题目展示了所有优秀数学家都使用的系统的第一原则推理,而GPT4仍然在这方面有困难 作者:Keith McNulty 我们中的许多人都熟悉直角三角形的边的规则。根据毕达哥拉斯定理,…...
实现strstr函数
一个字符串有没有在另一个字符串出现过 char* my_strstr(char* arr1, char* arr2) {char* cp;char* a1;char* a2;cp arr1;while (*cp){a1 cp;a2 arr2;while (*a1 *a2){a1;a2;}if (*a2 \0){return cp;}cp;}return NULL; } int main() {char arr1[] "abbbcdefgi"…...
C语言练习题解析(2)
💓博客主页:江池俊的博客⏩收录专栏:C语言刷题专栏👉专栏推荐:✅C语言初阶之路 ✅C语言进阶之路💻代码仓库:江池俊的代码仓库🎉欢迎大家点赞👍评论📝收藏⭐ 文…...
Element UI 表单验证规则动态失效问题
Element 版本:v2.15.3 问题背景 如下代码所示:有一个上传文件的 input 组件,在更新的时候,如果不上传文件表示不更新,如果要更新则点击 「重新上传」按钮将上传组件显示出来 <el-form ref"form" :mode…...
多线程并发篇
目录 1、线程生命周期 2、线程创建方式 3、Callable 与 Future 4、如何停止一个正在运行的线程 5、notify() 和 notifyAll() 的区别 6、sleep() 和 wait() 的区别 7、start() 和 run() 的区别 8、interrupted 和 isInterruptedd 的区别 9、CyclicBarrier 和 Count…...
pycharm-2023.1 closing project window stuck
pycharm-2023.1 closing project window stuck 问题描述 pycharm 切换项目/重启,一直卡在 closing project 原因分析 PyCharm 2023.1 issue - closing project window stuck (PyPIPackageUtil.lambda$parsePyPIListFromWeb) 解决方案 升级 pycharm 到 2023.3py…...
tkinter编写的打开csdn程序
目录 鬼畜tkinter简介程序代码解析现成总结鬼畜 看看你每次打开CSDN: 1.开机 2.打开浏览器 3.打开CSDN 4.等待 5.完成 我: 1.开机 2.点击%%%按钮 3.等待 4.完成 简单了不知道多少倍 上面的纯属鬼畜,下面正文!!! tkinter tkinter是一个用于创建图形用户界面(GUI)的Py…...
Vue3.2组件如何封装,以弹窗组件的封装为例
以前一直想,每次封装一个弹窗组件的时候,一直特别复杂,父传子,子传父,各种来回绕,来回修改。 一直想如何才能更加简化,但是一直没时间,今天终于抽时间出来封装了一下 本次封装简化…...
Vue知识系列(5)每天10个小知识点
目录 系列文章目录Vue知识系列(1)每天10个小知识点Vue知识系列(2)每天10个小知识点Vue知识系列(3)每天10个小知识点Vue知识系列(4)每天10个小知识点 知识点41.vue常用基本指令有哪些…...
Java基础题08——数组(查找下标所对应的值)
给定一个整数数组,输入一个值 n ,输出 n *在数组中的下标 **(*如果不存在输出 -1 ) 如:int[] arr {3, 2, 1, 4, 5}; 1 输入: 3 输出: 0 2. 输入: 6 输出: -1 int[] arr new int[]{3, 2, 1, 4,…...
LinkedList 源码分析
LinkedList 是一个基于双向链表实现的集合类。 LinkedList 插入和删除元素的时间复杂度 头部插入/删除:只需要修改头结点的指针即可完成插入/删除操作,因此时间复杂度为 O(1)。尾部插入/删除:只需要修改尾结点的指针即可完成插入/删除操作…...
跑步锻炼(蓝桥杯)
跑步锻练 题目描述 本题为填空题,只需要算出结果后,在代码中使用输出语句将所填结果输出即可。 小蓝每天都锻炼身体。 正常情况下,小蓝每天跑 1 千米。如果某天是周一或者月初(1 日),为了激励自己&#x…...
【SLAM】视觉SLAM简介
【SLAM】视觉SLAM简介 task04 主要了解了SLAM的主流框架,清楚VSALM中间接法与直接法的主要区别在什么地方,其各自的优势是什么,了解前端与后端的关系是什么 1.什么是SLAM 2.VSALM中间接法与直接法的主要区别在什么地方,其各自的…...
Visual Studio2019报错
1- Visual Studio2019报错 错误 MSB8036 找不到 Windows SDK 版本 10.0.19041.0的解决方法 小伙伴们在更新到Visual Studio2019后编译项目时可能遇到过这个错误:“ 错误 MSB8036 找不到 Windows SDK 版本 10.0.19041.0的解决方法”,但是我们明明安装了该…...
(十)学生端搭建
本次旨在将之前的已完成的部分功能进行拼装到学生端,同时完善学生端的构建。本次工作主要包括: 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...
java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别
UnsatisfiedLinkError 在对接硬件设备中,我们会遇到使用 java 调用 dll文件 的情况,此时大概率出现UnsatisfiedLinkError链接错误,原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用,结果 dll 未实现 JNI 协…...
理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练
前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...
MVC 数据库
MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...
linux 错误码总结
1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...
BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...
如何在最短时间内提升打ctf(web)的水平?
刚刚刷完2遍 bugku 的 web 题,前来答题。 每个人对刷题理解是不同,有的人是看了writeup就等于刷了,有的人是收藏了writeup就等于刷了,有的人是跟着writeup做了一遍就等于刷了,还有的人是独立思考做了一遍就等于刷了。…...
HDFS分布式存储 zookeeper
hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架,允许使用简单的变成模型跨计算机对大型集群进行分布式处理(1.海量的数据存储 2.海量数据的计算)Hadoop核心组件 hdfs(分布式文件存储系统)&a…...
R语言速释制剂QBD解决方案之三
本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...
