当前位置: 首页 > news >正文

【个人笔记本】本地化部署 类chatgpt模型 详细流程

不推荐小白,环境配置比较复杂

全部流程

  • 下载原始模型:Chinese-LLaMA-Alpaca-2
  • linux部署llamacpp环境
  • 使用llamacpp将Chinese-LLaMA-Alpaca-2模型转换为gguf模型
  • windows部署Text generation web UI 环境
  • 使用Text generation web UI 加载模型并进行对话

准备工作

  1. 笔记本环境:

    • 操作系统:win11
    • CPU:AMD R7535HS
    • GPU:笔记本4060显卡
    • CUDA版本:11.8
    • VM虚拟机:Ubuntu16

  2. 下载模型和部署环境全程需要挂梯子


下载原始模型

原项目链接:https://github.com/ymcui/Chinese-LLaMA-Alpaca-2

模型名称类型大小下载地址
Chinese-LLaMA-2-13B基座模型24.7 GB[百度] [Google] [🤗HF]
Chinese-LLaMA-2-7B基座模型12.9 GB[百度] [Google] [🤗HF]
Chinese-Alpaca-2-13B指令模型24.7 GB[百度] [Google] [🤗HF]
Chinese-Alpaca-2-7B指令模型12.9 GB[百度] [Google] [🤗HF]

下载Chinese-Alpaca-2-7B模型即可,百度网盘不需要挂梯子,其他都需要梯子


linux部署llamacpp环境

原项目链接:https://github.com/ggerganov/llama.cpp
原文档链接:https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/wiki/llamacpp_zh

Step 1: 安装python3.10

sudo apt update
sudo apt install python3.10

Step 2: 克隆和编译llama.cpp

  1. 拉取最新版llama.cpp仓库代码

    # 要安装git+梯子
    git clone https://github.com/ggerganov/llama.cpp
    

    或者

    #浏览器挂梯子打开https://github.com/ggerganov/llama.cpp
    #下载项目
    #解压缩项目到本地
    
  2. 对llama.cpp项目进行编译,生成./main(用于推理)和./quantize(用于量化)二进制文件

    cd 解压缩项目路径
    make
    

Step 3: 生成量化版本模型

  1. 创建目录并拷贝模型到项目目录:zh-models/7B/

  2. 将Chinese-LLaMA-Alpaca-2模型转换为gguf模型

    #根目录
    python convert.py zh-models/7B/
    
  3. 将生成的fp16格式的gguf模型进行4-bit量化

    ./quantize ./zh-models/7B/ggml-model-f16.gguf ./zh-models/7B/ggml-model-q4_0.gguf q4_0
    

Step 4: 加载并启动模型

到这一步其实可以用llama.cpp的加载模型方式对话了
但我用的虚拟机,性能有限,故而使用Text generation web UI 加载模型,具体如何加载建议看原文档和项目说明


windows部署Text generation web UI 环境

原项目:https://github.com/oobabooga/text-generation-webui

Step 1: 下载安装Miniconda3_py310

链接:https://repo.anaconda.com/miniconda/Miniconda3-py310_23.3.1-0-Windows-x86_64.exe

Step 2: 克隆项目到本地

git clone  https://github.com/oobabooga/text-generation-webui

Step 3: 打开Miniconda3命令行,建立新conda环境

conda create -n textgen

Step 4: 下载安装相关的python各类环境库

有github链接的必须手动下载whl,再pip安装whl的绝对位置

conda activate textgen
cd 项目位置
pip install env/bitsandbytes-0.41.1-py3-none-win_amd64.whl
pip install E:\AI\环境第三方库\auto_gptq-0.4.2+cu117-cp310-cp310-win_amd64.whlhttps://github.com/jllllll/exllama/releases/download/0.0.17/exllama-0.0.17+cu117-cp310-cp310-win_amd64.whl
pip install E:\AI\环境第三方库\exllama-0.0.17+cu117-cp310-cp310-win_amd64.whlpip install llama-cpp-python==0.1.84https://github.com/jllllll/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.1.84+cu117-cp310-cp310-win_amd64.whl
pip install E:\AI\环境第三方库\llama_cpp_python_cuda-0.1.84+cu117-cp310-cp310-win_amd64.whlhttps://github.com/jllllll/GPTQ-for-LLaMa-CUDA/releases/download/0.1.0/gptq_for_llama-0.1.0+cu117-cp310-cp310-win_amd64.whl
pip install E:\AI\环境第三方库\gptq_for_llama-0.1.0+cu117-cp310-cp310-win_amd64.whlhttps://github.com/jllllll/ctransformers-cuBLAS-wheels/releases/download/AVX2/ctransformers-0.2.25+cu117-py3-none-any.whl
pip install E:\AI\环境第三方库\ctransformers-0.2.25+cu117-py3-none-any.whlpip install -r requirements.txt -i 换源

Step 5: 启动web服务

conda activate textgen
cd E:/AI/项目/text-generation-webui-main
python server.py

使用Text generation web UI 加载模型并进行对话

  1. 打开生成的url网址
  2. 加载本地模型
  3. 对话即可

相关文章:

【个人笔记本】本地化部署 类chatgpt模型 详细流程

不推荐小白,环境配置比较复杂 全部流程 下载原始模型:Chinese-LLaMA-Alpaca-2linux部署llamacpp环境使用llamacpp将Chinese-LLaMA-Alpaca-2模型转换为gguf模型windows部署Text generation web UI 环境使用Text generation web UI 加载模型并进行对话 准…...

RFID与人工智能怎么融合,RFID与人工智能融合的应用

随着物联网技术的不断发展,现实世界与数字世界的桥梁已经被打通。物联网通过各种传感器,将现实世界中的光、电、热等信号转化为有价值的数据。这些数据可以通过RFID技术进行自动收集和传输,然后经由人工智能算法进行分析、建模和预测&#xf…...

性能测试 —— Jmeter 常用三种定时器

1、同步定时器 位置:HTTP请求->定时器->Synchronizing Timer 当需要进行大量用户的并发测试时,为了让用户能真正的同时执行,添加同步定时器,用户阻塞线程,知道线程数达到预先配置的数值,才开始执行…...

每个高级前端工程师都应该知道的前端布局

首发于公众号 大迁世界,欢迎关注。📝 每周一篇实用的前端文章 🛠️ 分享值得关注的开发工具 😜 分享个人创业过程中的趣事 快来免费体验ChatGpt plus版本的,我们出的钱 体验地址:https://chat.waixingyun.cn 可以加入网站底部技术群,一起找bug,另外新版作图神器已上线…...

100道基于Android毕业设计的选题题目,持续更新

博主介绍:✌程序员徐师兄、7年大厂程序员经历。全网粉丝30W,Csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 大家好,我是程序员徐师兄、今天给大家谈谈基于android的app开发毕设题目,以及基于an…...

idea显示git分支信息(GitToolBox插件)

效果图 说明 本身idea在右下角会有git分支信息,但是显示的当前打开文件的分支信息,并且不够显眼 解决 1、安装插件(GitToolBox插件) 2、修改idea.properties project.tree.structure.show.urlfalse ide.tree.horizontal.default.autoscrollingfalse将…...

Hadoop知识点之Hadoop发展历程

一、Hadoop名字的起源 Hadoop这个名字不是一个缩写,它是一个虚构的名字。 该项目的创建者,Doug Cutting如此解释Hadoop: 这个名字是我孩子给一头吃饱了的棕黄色大象命名的。我的命名标准就是简短,容易发音和拼写,没有…...

阿里云无影电脑:免费体验无影云电脑3个月

阿里云无影云电脑免费领取流程,免费无影云电脑配置为4核8G,可以免费使用3个月,阿里云百科分享阿里云无影云电脑(云桌面)免费申请入口、申请流程及免费使用限制条件说明: 目录 阿里云无影云电脑免费申请入…...

菜鸟教程《Python 3 教程》笔记(20):面向对象

菜鸟教程《Python 3 教程》笔记(20) 20 面向对象20.1 面向对象技术简介20.2 创建类20.2.1 类定义20.2.2 实例化20.2.3 初始化20.2.4 类变量、实例变量20.2.5 类方法、实例方法、静态方法 20.3 访问可见性20.3.1 property装饰器 20.4 动态性20.4.1 __slot…...

vue2编辑markdown

效果 npm i mavon-editor --save 只能全局注册 使用...

PCB走线规则

1、线间距。 这里应该遵循3W规则,所谓3W就是为了减少线间串扰,应保证线间距足够大,当线中心不少于3倍线宽,则可 保持70%的电场不互相干扰。如要达到98%的电场不互相干扰,可使用10W的间距。——这是查阅华为PCB布线规则…...

webpack静态资源上传到CDNS (阿里云 OSS,亚马逊 AWS S3,七牛云 Qiniu Cloud Kodo)webpack-plugin-cdns

webpack-plugin-cdns 是一个 Webpack 插件,用于实现将前端项目中的资源(如 JavaScript、CSS、图片等)上传到 CDN(OSS、S3、Kodo) 服务器。从而完成资源的 CDN 加速。 在开发前端项目时,我们通常会将静态资源放在本地服务器上&…...

python 异常

1.捕获异常 2.密码爆破 3....

stm32--独立看门狗

最近学习到独立看门狗,总结下笔记 1.看门狗的作用:防止程序异常跑飞,跑飞时,进行系统复位,从而不会导致代码瘫痪,奔溃卡死在某段程序。 2.看门狗其实是12bit递减计数器,,减到0会产…...

vue3中css使用script中定义的变量

代码 <template><div class"box">haha</div> </template><script setup lang"ts"> const boxWidth 500px </script><style lang"scss"> .box {width: v-bind(boxWidth);height: 200px;background-c…...

Ubuntu 22.04 安装配置 flatpak

Ubuntu 22.04 安装配置 Flatpak 安装 Flatpak sudo apt install flatpakFlatpak 仓库配置 官方仓库 https://flathub.org/repo/flathub上交大镜像 https://mirror.sjtu.edu.cn/flathub flatpak remote-add --if-not-exists flathub https://flathub.org/repo/flathub.flatp…...

oracle创建数据库以及用户,并导入dmp格式数据

oracle创建数据库以及用户&#xff0c;并导入dmp格式数据 安装可参考之前的文章https://blog.csdn.net/qq_43421954/article/details/132717546?spm1001.2014.3001.5501 首先创建表空间&#xff08;也就是其他数据库所谓的数据库&#xff09; 使用的是navicat,连接配置可以参…...

[deeplearning]pytorch实现softmax多分类问题预测训练

写在前面&#xff1a;俺这两天也是刚刚加入实验室&#xff0c;因为之前的学习过程中用到更多的框架是tensorflow&#xff0c;所以突然上手pytorch多少有些力不从心了。 这两个框架的主要区别在与tensorflow更偏向于工业使用&#xff0c;所以里面的很多函数和类都已经封装得很完…...

【C++初阶】动态内存管理

​&#x1f47b;内容专栏&#xff1a; C/C编程 &#x1f428;本文概括&#xff1a; C/C内存分布、C语言动态内存管理、C动态内存管理、operator new与operator delete函数、new和delete的实现原理、定位new表达式、常见面试问题等。 &#x1f43c;本文作者&#xff1a; 阿四啊 …...

Mac电脑安装Zulu Open JDK 8 使用 spring-kafka 消费不到Kafka Partition中的消息

一、现象描述 使用Mac电脑本地启动spring-kakfa消费不到Kafka的消息&#xff0c;监控消费组的消息偏移量发现存在Lag的消息&#xff0c;但是本地客户端就是拉取不到&#xff0c;通过部署到公司k8s容器上消息却能正常消费&#xff01; 本地启动的服务消费组监控 公司k8s容器服…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式&#xff0c;可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能&#xff0c;本节首先介绍如何通过 Docker 快速体验 TDengine&#xff0c;然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker&#xff0c;请使用 安装包的方式快…...

利用ngx_stream_return_module构建简易 TCP/UDP 响应网关

一、模块概述 ngx_stream_return_module 提供了一个极简的指令&#xff1a; return <value>;在收到客户端连接后&#xff0c;立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量&#xff08;如 $time_iso8601、$remote_addr 等&#xff09;&a…...

如何为服务器生成TLS证书

TLS&#xff08;Transport Layer Security&#xff09;证书是确保网络通信安全的重要手段&#xff0c;它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书&#xff0c;可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

Java入门学习详细版(一)

大家好&#xff0c;Java 学习是一个系统学习的过程&#xff0c;核心原则就是“理论 实践 坚持”&#xff0c;并且需循序渐进&#xff0c;不可过于着急&#xff0c;本篇文章推出的这份详细入门学习资料将带大家从零基础开始&#xff0c;逐步掌握 Java 的核心概念和编程技能。 …...

多模态大语言模型arxiv论文略读(108)

CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题&#xff1a;CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者&#xff1a;Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

均衡后的SNRSINR

本文主要摘自参考文献中的前两篇&#xff0c;相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程&#xff0c;其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt​ 根发送天线&#xff0c; n r n_r nr​ 根接收天线的 MIMO 系…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

【Android】Android 开发 ADB 常用指令

查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...