当前位置: 首页 > news >正文

1462. 课程表 IV

文章目录

  • Tag
  • 题目来源
  • 题目解读
  • 解题思路
    • 方法一:Floyd传递闭包
    • 方法二:拓扑排序
  • 思考
  • 写在最后

Tag

【拓扑排序】【传递闭包】【并查集】【数组】


题目来源

1462. 课程表 IV


题目解读

给你一个表示课程先决条件的数组 prerequisitesprerequisites[i] = [a, b] 表示在学习课程 b 之前要先学习课程 a,课程 ab 的直接先决条件。如果课程 a 是课程 b 的先决条件,课程 b 是课程 c 的先决条件,那么课程 a 是课程 c 的间接先决条件。现在需要你根据查询数组 queries,根据 queries[i] = [u, v] 查询课程 u 是否是课程 v 的先决条件,最后返回一个 bool 类型的数组 retret[i] 表示数组 queries 的第 i 次查询的结果。


解题思路

主要思路是怎么建立课程节点之间的联系。以下介绍两种方法。

方法一:Floyd传递闭包

一个直观的想法是利用提供的 prerequisites 数组现将两个课程节点连接起来,根据 F l o y d Floyd Floyd 算法传递闭包,建立课程节点之间的联系。

实现代码

class Solution {
public:vector<bool> checkIfPrerequisite(int numCourses, vector<vector<int>>& prerequisites, vector<vector<int>>& queries) {vector<vector<bool>> graphy(numCourses, vector<bool>(numCourses, false));for (auto pre : prerequisites) {int x = pre[0], y = pre[1];graphy[x][y] = true;}for (int k = 0; k < numCourses; ++k) {             // 中间节点for (int i = 0; i < numCourses; ++i) {for (int j = 0; j < numCourses; ++j) {if (graphy[i][k] && graphy[k][j]) {graphy[i][j] = true;}}}}vector<bool> res;for (auto query : queries) {int x = query[0], y = query[1];res.push_back(graphy[x][y]);} return res;}
};

复杂度分析

时间复杂度: O ( n u m C o u r s e s 3 ) O(numCourses^3) O(numCourses3) n u m C o u r s e s numCourses numCourses 表示课程的数目,本题数据量为 1 0 2 10^2 102,因此不会超时。

空间复杂度: O ( n u m C o u r s e s 2 ) O(numCourses^2) O(numCourses2),主要是建图占用的额外空间。

方法二:拓扑排序

题目中保证没有环,可以利用拓扑排序来建立课程节点之间的联系,通过拓扑排序记录每个课程节点的直接或间接先决条件。

具体地,维护一个数组 inDegree 用来记录课程节点的入度;维护一个队列 que 存放拓扑排序的课程节点,初始化加入入度为 0 的课程节点;维护一个 edges 用来记录课程节点之间的关系;维护一个 numCourse x numCourse 的矩阵 isPre,其中 isPre[x][y] 表示课程 x 是否是课程 y 的直接或者间接先决条件。

程序执行流程,前面就是拓扑排序的常规操作,包括:

  • 记录课程节点的入度;
  • 建立课程节点之间的边关系;
  • 将入度为 0 的节点加入队列中;
  • 依次取出队列中入度为 0 的课程节点,设当前出队的节点为 x,枚举 edges[x] 中的课程节点 y,对其进行 操作,并 --inDegree[y],如果 inDegree[y] = 0,则加入队列。

以上是拓扑排序的模板操作,现在来介绍一下其中的 操作

当前出队的节点为 x,枚举 edges[x] 中的课程节点 y,于是课程节点 xy 的直接先决条件,因此 isPre[x][y] = true,这时候枚举其他的课程节点 i,更新 isPre[i][y] = isPre[i][y] | isPre[i][x]

最后,遍历查询数组的每一个查询,根据 isPre 结果即可得到每一个查询结果。

实现代码

class Solution {
public:vector<bool> checkIfPrerequisite(int numCourses, vector<vector<int>>& prerequisites, vector<vector<int>>& queries) {vector<int> inDegree(numCourses);queue<int> que;vector<vector<int>> edges(numCourses);vector<vector<bool>> isPre(numCourses, vector<bool>(numCourses, false));for (auto pre : prerequisites) {int x = pre[0], y = pre[1];++inDegree[y];edges[x].push_back(y);}for (int i = 0; i < numCourses; ++i) {if (inDegree[i] == 0) {que.push(i);}}while (!que.empty()) {int x = que.front();que.pop();for (auto y : edges[x]) {isPre[x][y] = true;for (int i = 0; i < numCourses; ++i) {isPre[i][y] = isPre[i][y] | isPre[i][x];}--inDegree[y];if (inDegree[y] == 0) {que.push(y);}}}vector<bool> res;for (auto query : queries) {int x = query[0], y = query[1];if  (isPre[x][y]) {res.push_back(true);}else res.push_back(false);} return res;}
};/*
拓扑排序
题目中保证没有环,可以利用拓扑排序来建立课程节点之间的联系
通过拓扑排序记录每个课程节点的直接或间接先决条件
*/ 

复杂度分析

时间复杂度: O ( n u m C o u r s e 2 + n + m ) O(numCourse^2+n+m) O(numCourse2+n+m),其中 n u m C o u r s e s numCourses numCourses 是课程数, n n n 为数组 prerequisites 的长度, m m m 为查询数。主要是计算 isPre 矩阵的时间复杂度为 O ( n u m C O u r s e 2 ) O(numCOurse^2) O(numCOurse2),构建有向图复杂度为 O ( n u m C o u r s e s + n ) O(numCourses+n) O(numCourses+n) m m m 次查询时间复杂度为 O ( m ) O(m) O(m)

空间复杂度: O ( n u m C o u r s e s 2 + n ) O(numCourses^2+n) O(numCourses2+n),主要是构建有向图和矩阵 isPre 的空间开销。

思考

题目中的课程节点之间的先决关系类似于一种父子关系,能否利用【并查集】的方法解决该问题呢?

写在最后

如果文章内容有任何错误或者您对文章有任何疑问,欢迎私信博主或者在评论区指出 💬💬💬。

如果大家有更优的时间、空间复杂度方法,欢迎评论区交流。

最后,感谢您的阅读,如果感到有所收获的话可以给博主点一个 👍 哦。

相关文章:

1462. 课程表 IV

文章目录 Tag题目来源题目解读解题思路方法一&#xff1a;Floyd传递闭包方法二&#xff1a;拓扑排序 思考写在最后 Tag 【拓扑排序】【传递闭包】【并查集】【数组】 题目来源 1462. 课程表 IV 题目解读 给你一个表示课程先决条件的数组 prerequisites&#xff0c;prerequis…...

QTday2

完善登录框 点击登录按钮后&#xff0c;判断账号&#xff08;admin&#xff09;和密码&#xff08;123456&#xff09;是否一致&#xff0c;如果匹配失败&#xff0c;则弹出错误对话框&#xff0c;文本内容“账号密码不匹配&#xff0c;是否重新登录”&#xff0c;给定两个按钮…...

thrift的简单使用

写在前面 本文一起看下一种由facebook出品的rpc框架thrift。 源码 。 1&#xff1a;开发步骤 1:编写thrift idl文件 2&#xff1a;根据thrift idl文件生成java模板代码 3&#xff1a;继承模板代码的*.Iface接口给出server的具体服务实现 4&#xff1a;使用模板的HelloWorldSe…...

Python实现猎人猎物优化算法(HPO)优化随机森林分类模型(RandomForestClassifier算法)项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档视频讲解&#xff09;&#xff0c;如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 猎人猎物优化搜索算法(Hunter–prey optimizer, HPO)是由Naruei& Keynia于2022年提出的一种最新的…...

2023年7月京东平板电脑行业品牌销售排行榜(京东销售数据分析)

鲸参谋监测的京东平台7月份平板电脑市场销售数据已出炉&#xff01; 根据鲸参谋电商数据分析平台的相关数据显示&#xff0c;今年7月份&#xff0c;京东平台上平板电脑的销量为68万&#xff0c;同比增长超过37%&#xff1b;销售额为22亿&#xff0c;同比增长约54%。从价格上看…...

HTML显示中文空格字符,emsp;一个中文字符,ensp;半个中文字符

&emsp;一个中文字符 &ensp;半个中文字符 <ul><li class"li">姓&emsp;&emsp;名&#xff1a;<input type"text" /></li><li class"li">手&ensp;机&ensp;号&#xff1a;<input type"…...

Python基础指令(上)

Python基础指令上 常量和表达式变量和类型1. 什么是变量2. 变量的语法2.1 定义变量2.2 使用变量 3. 变量的类型4. 为什么要有这么多类型5. 动态类型特性 注释输入输出1. 程序与用户的交互2. 通过控制台输出3. 通过控制台输入 运算符1. 算术运算符2. 关系运算符3. 逻辑运算符4. …...

Python之FastAPI返回音视频流

Python之FastAPI返回音视频流 今天想要记录一下困扰我几天的一个问题&#xff0c;关于FastAPI返回音视频流。首先FastAPI挂载静态资源其实超级简单&#xff0c;但是对于音视频流&#xff0c;如果你想要有播放进度可以拖动&#xff0c;需要单独处理。 有以下几点想跟大家分享&a…...

文件名批量重命名与翻译的实用指南

在日常办公中&#xff0c;我们经常遇到需要批量修改文件名并进行翻译的情况。手动一个一个修改文件名既费时又繁琐&#xff0c;而且还可能出现错误。今天&#xff0c;我们将介绍一种高效的方法&#xff0c;利用文件管理工具“固乔文件管家”&#xff0c;能够快速批量修改文件名…...

上海长宁来福士P2.5直径4米无边圆形屏圆饼屏圆面屏圆盘屏平面圆屏异形创意LED显示屏案例

长宁来福士广场是一个大型广场&#xff0c;坐落于上海中山公园商圈的核心区域&#xff0c;占地逾6万平方米&#xff0c;其中地上总建筑面积近24万平方米&#xff0c;总投资额约为96亿人民币。 LED圆形屏是根据现场和客户要求定制的一款异形创意LED显示屏&#xff0c;进行文字、…...

Linux 企业级夜莺监控分析工具远程访问

文章目录 前言1. Linux 部署Nightingale2. 本地访问测试3. Linux 安装cpolar4. 配置Nightingale公网访问地址5. 公网远程访问Nightingale管理界面6. 固定Nightingale公网地址 前言 夜莺监控是一款开源云原生观测分析工具&#xff0c;采用 All-in-One 的设计理念&#xff0c;集…...

react使用内联css样式的注意点

react使用内联css样式: 就是直接在元素标签的style属性中写css样式&#xff0c;但是这里有三个注意点: 1. style等号后面必须接双大括号也就是 style{{ xx: xx }} 这样 2. css的属性必须写成驼峰型&#xff0c;不能有中横线&#xff0c;比如marginRight, 而不能说margin-righ…...

优先队列PriorityQueue源码解析

基本信息 实现了队列接口&#xff1a;Queue --> AbstractQueue --> PriorityQueue public class PriorityQueue<E> extends AbstractQueue<E> implements java.io.Serializable {public abstract class AbstractQueue<E> extends AbstractCollection…...

前端开发中常见的跨域问题及解决方案

引言 在前端开发中&#xff0c;跨域问题是一个非常常见的问题。本文将详细介绍什么是跨域&#xff0c;常见的跨域场景&#xff0c;以及各种常用的跨域解决方案。 什么是跨域 跨域是指一个网页或者Web应用在浏览器中发起对另一个域名下资源的请求。由于浏览器的同源策略限制&…...

(超详解)堆排序+(图解)

目录&#xff1a; 1:如何建堆(两种方法) 2:两种方法建堆的时间复杂度分析与计算 3:不同类型的排序方式我们应该如何建堆 文章正式开始&#xff1a; 1&#xff1a;如何建堆 在实现堆排序之前我们必须得建堆&#xff0c;才能够实现堆排序 首先在讲解如何建堆之前让我们先来回顾一…...

Hadoop的YARN高可用

一、YARN简介 Hadoop2.0即第二代Hadoop&#xff0c;由分布式存储系统HDFS、并行计算框架MapReduce和分布式资源管理系统YARN三个系统组成&#xff0c;其中YARN是一个资源管理系统&#xff0c;负责集群资源管理和调度&#xff0c;MapReduce则是运行在YARN上的离线处理框架。 Y…...

C++内存检查

内存泄漏是程序中常见&#xff0c;也是最令人痛苦的一种bug。好在有一些检查工具可以帮助我们&#xff0c;这里介绍一个google 提供的简单直接的工具 Address-Sanitizer (ASAN)。 预备条件 ASAN 原来是LLVM 中的特性&#xff0c;后来GCC 4.8中也开始支持。也就是说&#xff0…...

防火墙概述及实战

目录 前言 一、概述 &#xff08;一&#xff09;、防火墙分类 &#xff08;二&#xff09;、防火墙性能 &#xff08;三&#xff09;、iptables &#xff08;四&#xff09;、iptables中表的概念 二、iptables规则匹配条件分类 &#xff08;一&#xff09;、基本匹配条…...

nginx代理故障总结

一、故障现象 今天公司的某个系统文件下载功能失败&#xff0c;报错network error&#xff0c;其他功能正常。 二、故障定位 首先我们检查了公司的网络情况&#xff0c;包括网络路由、防火墙策略、终端安全产品等&#xff0c;均未发现异常。 尝试访问http://X.X.X.X:7002端口&…...

python爬虫爬取电影数据并做可视化

思路&#xff1a; 1、发送请求&#xff0c;解析html里面的数据 2、保存到csv文件 3、数据处理 4、数据可视化 需要用到的库&#xff1a; import requests,csv #请求库和保存库 import pandas as pd #读取csv文件以及操作数据 from lxml import etree #解析html库 from …...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】

微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来&#xff0c;Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

C++ 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)

文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...

企业如何增强终端安全?

在数字化转型加速的今天&#xff0c;企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机&#xff0c;到工厂里的物联网设备、智能传感器&#xff0c;这些终端构成了企业与外部世界连接的 “神经末梢”。然而&#xff0c;随着远程办公的常态化和设备接入的爆炸式…...

Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?

在大数据处理领域&#xff0c;Hive 作为 Hadoop 生态中重要的数据仓库工具&#xff0c;其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式&#xff0c;很多开发者常常陷入选择困境。本文将从底…...

腾讯云V3签名

想要接入腾讯云的Api&#xff0c;必然先按其文档计算出所要求的签名。 之前也调用过腾讯云的接口&#xff0c;但总是卡在签名这一步&#xff0c;最后放弃选择SDK&#xff0c;这次终于自己代码实现。 可能腾讯云翻新了接口文档&#xff0c;现在阅读起来&#xff0c;清晰了很多&…...

MySQL JOIN 表过多的优化思路

当 MySQL 查询涉及大量表 JOIN 时&#xff0c;性能会显著下降。以下是优化思路和简易实现方法&#xff1a; 一、核心优化思路 减少 JOIN 数量 数据冗余&#xff1a;添加必要的冗余字段&#xff08;如订单表直接存储用户名&#xff09;合并表&#xff1a;将频繁关联的小表合并成…...

OD 算法题 B卷【正整数到Excel编号之间的转换】

文章目录 正整数到Excel编号之间的转换 正整数到Excel编号之间的转换 excel的列编号是这样的&#xff1a;a b c … z aa ab ac… az ba bb bc…yz za zb zc …zz aaa aab aac…; 分别代表以下的编号1 2 3 … 26 27 28 29… 52 53 54 55… 676 677 678 679 … 702 703 704 705;…...

MeshGPT 笔记

[2311.15475] MeshGPT: Generating Triangle Meshes with Decoder-Only Transformers https://library.scholarcy.com/try 真正意义上的AI生成三维模型MESHGPT来袭&#xff01;_哔哩哔哩_bilibili GitHub - lucidrains/meshgpt-pytorch: Implementation of MeshGPT, SOTA Me…...

基于Python的气象数据分析及可视化研究

目录 一.&#x1f981;前言二.&#x1f981;开源代码与组件使用情况说明三.&#x1f981;核心功能1. ✅算法设计2. ✅PyEcharts库3. ✅Flask框架4. ✅爬虫5. ✅部署项目 四.&#x1f981;演示效果1. 管理员模块1.1 用户管理 2. 用户模块2.1 登录系统2.2 查看实时数据2.3 查看天…...