当前位置: 首页 > news >正文

【深度学习实验】线性模型(一):使用NumPy实现简单线性模型:搭建、构造损失函数、计算损失值

#【中秋征文】程序人生,中秋共享#

目录

一、实验介绍

 二、实验环境

1. 配置虚拟环境

2. 库版本介绍

三、实验内容

0. 导入库

1. 定义线性模型linear_model

2. 定义损失函数loss_function

3. 定义数据

4. 调用函数


一、实验介绍

  • 使用Numpy实现
    • 线性模型搭建
    • 构造损失函数
    • 计算损失值

 二、实验环境

        本系列实验使用了PyTorch深度学习框架,相关操作如下:

1. 配置虚拟环境

conda create -n DL python=3.7 
conda activate DL
pip install torch==1.8.1+cu102 torchvision==0.9.1+cu102 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
conda install matplotlib
 conda install scikit-learn

2. 库版本介绍

软件包本实验版本目前最新版
matplotlib3.5.33.8.0
numpy1.21.61.26.0
python3.7.16
scikit-learn0.22.11.3.0
torch1.8.1+cu1022.0.1
torchaudio0.8.12.0.2
torchvision0.9.1+cu1020.15.2

三、实验内容

ChatGPT:

        线性模型是一种基本的机器学习模型,用于建立输入特征与输出之间的线性关系。它是一种线性组合模型,通过对输入特征进行加权求和,再加上一个偏置项,来预测输出值。

        线性模型的一般形式可以表示为:y = w1x1 + w2x2 + ... + wnxn + b,其中y是输出变量,x1, x2, ..., xn是输入特征,w1, w2, ..., wn是特征的权重,b是偏置项。模型的目标是通过调整权重和偏置项,使预测值与真实值之间的差异最小化。

线性模型有几种常见的应用形式:

  1. 线性回归(Linear Regression):用于建立输入特征与连续输出之间的线性关系。它通过最小化预测值与真实值的平方差来拟合最佳的回归直线。

  2. 逻辑回归(Logistic Regression):用于建立输入特征与二分类或多分类输出之间的线性关系。它通过使用逻辑函数(如sigmoid函数)将线性组合的结果映射到概率值,从而进行分类预测。

  3. 支持向量机(Support Vector Machines,SVM):用于二分类和多分类问题。SVM通过找到一个最优的超平面,将不同类别的样本分隔开。它可以使用不同的核函数来处理非线性问题。

  4. 岭回归(Ridge Regression)和Lasso回归(Lasso Regression):用于处理具有多重共线性(multicollinearity)的回归问题。它们通过对权重引入正则化项,可以减小特征的影响,提高模型的泛化能力。

        线性模型的优点包括简单、易于解释和计算效率高。它们在许多实际问题中都有广泛的应用。然而,线性模型也有一些限制,例如对非线性关系的建模能力较弱。在处理复杂的问题时,可以通过引入非线性特征转换或使用核函数进行扩展,以提高线性模型的性能。

本系列为实验内容,对理论知识不进行详细阐释

(咳咳,其实是没时间整理,待有缘之时,回来填坑)

0. 导入库

首先,导入了numpy库,用于进行数值计算。

import numpy as np

1. 定义线性模型linear_model

        该函数接受输入数据x,使用随机生成的权重w和偏置b,计算输出值output。这里的线性模型的形式为 output = x * w + b

def linear_model(x):w = np.random.randn(1)b = np.random.randn(1)output = np.dot(x, w) + breturn output

2. 定义损失函数loss_function

        该函数接受目标值y和模型预测值prediction,计算均方误差损失。均方误差损失的计算公式为 (prediction - y) * (prediction - y)

def loss_function(y, prediction):loss = (prediction - y) * (prediction - y)return loss

3. 定义数据

  • 生成了一个形状为(5, 1)的随机输入数据x,每个元素都是在0到1之间的随机数。
  • 生成了一个形状为(5,)的目标值y,包含了5个标签(1或-1),用于模型训练和损失计算。
  • 打印了数据的信息,包括每个样本的输入值x和目标值y
x = np.random.rand(5, 1)
y = np.array([1, -1, 1, -1, 1]).astype('float')
print("The data is as follows:")
for i in range(x.shape[0]):print("Item " + str(i), "x:", x[i][0], "y:", y[i])

4. 调用函数

  • 调用linear_model函数,传入输入数据x,得到模型的预测值prediction
  • 调用loss_function函数,传入目标值y和预测值prediction,得到损失值loss
  • 打印了每个样本的损失值。
prediction = linear_model(x)
loss = loss_function(y, prediction)
print("The all loss value is:")
for i in range(len(loss)):print("Item ", str(i), "Loss:", loss[i])


注意:

        本实验的线性模型仅简单地使用随机权重和偏置,计算了模型在训练集上的均方误差损失,没有使用优化算法进行模型参数的更新。

        通常情况下会使用梯度下降等优化算法来最小化损失函数,并根据训练数据不断更新模型的参数,具体内容请听下回分解。

相关文章:

【深度学习实验】线性模型(一):使用NumPy实现简单线性模型:搭建、构造损失函数、计算损失值

#【中秋征文】程序人生,中秋共享# 目录 一、实验介绍 二、实验环境 1. 配置虚拟环境 2. 库版本介绍 三、实验内容 0. 导入库 1. 定义线性模型linear_model 2. 定义损失函数loss_function 3. 定义数据 4. 调用函数 一、实验介绍 使用Numpy实现 线性模型搭…...

springcloud3 分布式事务-seata的四种模式总结以及异地容灾

一 seata四种模式比较 1.1 seata的4种模式比较 二 seata的高可用 2.1架构 1.建TC服务集群非常简单,启动多个TC服务,注册到nacos即可。 2.做异地多机房容灾,比如一个TC集群在上海,另一个TC集群在杭州, 3.微服务基…...

【办公类-16-06】20230901大班运动场地分配表-斜线排列、5天循环、不跳节日,手动修改节日”(python 排班表系列)

背景需求: 大班组长发来一个“运动排班”的需求表:“就是和去年一样的每个班的运动排班,就因为今年大班变成7个班,删掉一个场地,就要重新做一份,不然我就用去年的那份了(8个大班排班&#xff0…...

java学习--day13 (static关键字、异常)

文章目录 day12复习今天的内容1.static关键字【重点】1.1生活的角度来理解静态的资源1.2Java中的静态1.2.1static修饰成员变量1.2.2static修饰成员方法1.2.3static修饰代码块 2.异常2.1生活中的异常2.2Java中的异常2.3Throwable类2.4错误和异常2.5异常【重点】2.5.1异常的捕捉2…...

英飞凌TC3xx--深度手撕HSM安全启动(五)--TC3xx HSM启动流程、通信机制分析

在包含HSM的MCU的软件开发里,Host和Hsm应该为两个独立的软件工程。不管是Etas还是Vector的HSM包,都是需要单独收费的。 既然是单独的工程,相应的启动代码也是必须要有的。 在英飞凌的HSM固件架构里,HSM BootRom主要有以下几个作用:内部测试、生产使用、启动配置等。那么接…...

【窗体】Winform两个窗体之间通过委托事件进行值传递,基础篇

2023年,第38周。给自己一个目标,然后坚持总会有收货,不信你试试! 在实际项目中,我们可能会用到一些窗体做一些小工具或者小功能。比如:运行程序,在主窗体A基础上,点击某个按钮希望能…...

mac使用指南

新公司给配备了mac,可惜土鳖的我不会用,所以特地写了一篇文章记录学习mac的过程 快捷键 删除:commanddelete 光标移至最右/左:command右/左箭头 截图:commandshift3/4/5,3代表截全屏,4代表选…...

Git 版本控制系统 笔记

概念:一个免费开源,分布式的代码版本控制系统,帮助开发团队维护代码 作用:记录代码内容,切换代码版本,多人开发时高效合并代码内容【团队开发同一个项目的代码版本管理】 1、Git 安装 之前写了&#xff0…...

VRTK4⭐四.和 UI 元素交互

文章目录 🟥 安装Tilia Unity.UI🟧 配置射线与UI交互器1️⃣ 配置直线射线2️⃣ 配置UI交互器 🟨 配置UI1️⃣ 更新EventSystem2️⃣ 进行Canvas设置 我们要实现的功能: 右手触摸到圆盘:显示直线射线 右手圆盘键按下:与选中UI交互 &#x1f7…...

【STM32】SDIO—SD 卡读写01

基于stm32f103 基于零死角玩转STM32—F103指南者 简介 1.SD 卡总共有 8 个寄存器,用于设定或表示 SD 卡信息。 2.SD卡的寄存器不能像STM32那样访问,而是利用命令访问,SDIO 定义了 64 个命令。SD 卡接收到命令后,根据命令要求对…...

SpringCloud Alibaba 整合Sentinel的基本使用

文章目录 一、什么是Sentinel二、Sentinel 的主要特性1. 流量控制:2. 熔断降级:3. 实时监控:4. 规则配置:5. 集成方便: 三、Sentinel 分为哪几部分:1. 核心库(Java 客户端)2. 控制台&#xff08…...

Linux中如何执行命令

目录 命令格式: 命令分类: 命令帮助: 1、man 2、help 3、--help 4、info命令 终止命令: 补全命令: 1)补全命令: 2)补全文件名和目录名: 命令格式:…...

基于51单片机的智能病房呼叫系统的设计与实现

一、前言 显示床位号使用到4位数码管,为了节约单片IO口,使用TM1637来驱动数码管。 二、TM1637驱动芯片简介 三、电路设计,使用矩阵按键来模拟每个床位的呼叫按钮 四、编写51单片机代码 void delay_ms(u16 n) {u8 i;while(n--){i 111;while…...

js在一个时间范围内产生一个随机时间

js使用使用到Math.random()方法实现在一个时间范围内产生一个随机时间。 /*在时间范围内产生一个随机时间*/ function randomDate(start, end) {if (start ! null && end ! null) {const _start new Date(start).getTime();const _end new Date(end).getTime();cons…...

Javascript Date 对象相关知识

Javascript Date 对象相关知识 参考文章虹猫1992 创建 Date 对象. 方法一: 自动使用当前的日期和时间作为其初始值. var date new Date();方法二:将给定的毫秒数转换为使用的时间,new Date(dateVal) 如果是数字值,dateVal表示指定日期与1970年1月1日午…...

Vim快捷用法

以下为文本操作 1.快速切换 行首^(shift4) 行尾$(shift6) 文章开始gg 位置末尾G 向下翻页CTRLB 向上翻页CTRLF 2.删除内容 删除一行 dd 3.复制粘贴 复制一行yy 粘贴 p 4.撤销操作 撤销操作 u 恢复操作ctrlr 以下都为底行操作 1.显示行号 set nu 2.多文件分屏阅读 加入阅…...

Stream流的常用方法(自用)

自用的笔记, 有🚩 需要多看 基本数据 自定义实体 Data class Student{private String name;private Integer age;private Double height;public Student() {} }假数据 Student s1 new Student(); s1.setAge(20); s1.setName("cookie"); s1.setHeight(…...

【python函数】torch.nn.Embedding函数用法图解

学习SAM模型的时候,第一次看见了nn.Embedding函数,以前接触CV比较多,很少学习词嵌入方面的,找了一些资料一开始也不是很理解,多看了两遍后,突然顿悟,特此记录。 SAM中PromptEncoder中运用nn.Emb…...

with ldid... /opt/MonkeyDev/bin/md: line 326: ldid: command not found

吐槽傻逼xcode 根据提示 执行了这个脚本/opt/MonkeyDev/bin/md 往这里面添加你brew install 安装文件的目录即可...

[golang gui]fyne框架代码示例

1、下载GO Go语言中文网 golang安装包 - 阿里镜像站(镜像站使用方法:查找最新非rc版本的golang安装包) golang安装包 - 中科大镜像站 go二进制文件下载 - 南京大学开源镜像站 Go语言官网(Google中国) Go语言官网(Go团队) 截至目前(2023年9月17日&#x…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望

文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地

借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...

TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案

一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...

全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比

目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...

DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”

目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

回溯算法学习

一、电话号码的字母组合 import java.util.ArrayList; import java.util.List;import javax.management.loading.PrivateClassLoader;public class letterCombinations {private static final String[] KEYPAD {"", //0"", //1"abc", //2"…...

【C++特殊工具与技术】优化内存分配(一):C++中的内存分配

目录 一、C 内存的基本概念​ 1.1 内存的物理与逻辑结构​ 1.2 C 程序的内存区域划分​ 二、栈内存分配​ 2.1 栈内存的特点​ 2.2 栈内存分配示例​ 三、堆内存分配​ 3.1 new和delete操作符​ 4.2 内存泄漏与悬空指针问题​ 4.3 new和delete的重载​ 四、智能指针…...

nnUNet V2修改网络——暴力替换网络为UNet++

更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...