通俗神经网络
经典的全连接神经网络
经典的全连接神经网络来包含四层网络:输入层、两个隐含层和输出层,将手写数字识别任务通过全连接神经网络表示,如 图3 所示。
图3:手写数字识别任务的全连接神经网络结构
- 输入层:将数据输入给神经网络。在该任务中,输入层的尺度为28×28的像素值。
- 隐含层:增加网络深度和复杂度,隐含层的节点数是可以调整的,节点数越多,神经网络表示能力越强,参数量也会增加。在该任务中,中间的两个隐含层为10×10的结构,通常隐含层会比输入层的尺寸小,以便对关键信息做抽象,激活函数使用常见的Sigmoid函数。
- 输出层:输出网络计算结果,输出层的节点数是固定的。如果是回归问题,节点数量为需要回归的数字数量。如果是分类问题,则是分类标签的数量。在该任务中,模型的输出是回归一个数字,输出层的尺寸为1。
说明:
隐含层引入非线性激活函数Sigmoid是为了增加神经网络的非线性能力。
举例来说,如果一个神经网络采用线性变换,有四个输入x1x_1x1~x4x_4x4,一个输出yyy。假设第一层的变换是z1=x1−x2z_1=x_1-x_2z1=x1−x2和z2=x3+x4z_2=x_3+x_4z2=x3+x4,第二层的变换是y=z1+z2y=z_1+z_2y=z1+z2,则将两层的变换展开后得到y=x1−x2+x3+x4y=x_1-x_2+x_3+x_4y=x1−x2+x3+x4。也就是说,无论中间累积了多少层线性变换,原始输入和最终输出之间依然是线性关系。
Sigmoid是早期神经网络模型中常见的非线性变换函数,绘制出Sigmoid的函数曲线。
卷积神经网络
虽然使用经典的全连接神经网络可以提升一定的准确率,但其输入数据的形式导致丢失了图像像素间的空间信息,这影响了网络对图像内容的理解。对于计算机视觉问题,效果最好的模型仍然是卷积神经网络。卷积神经网络针对视觉问题的特点进行了网络结构优化,可以直接处理原始形式的图像数据,保留像素间的空间信息,因此更适合处理视觉问题。
卷积神经网络由多个卷积层和池化层组成,如 图4 所示。卷积层负责对输入进行扫描以生成更抽象的特征表示,池化层对这些特征表示进行过滤,保留最关键的特征信息。
图4:在处理计算机视觉任务中大放异彩的卷积神经网络
说明:
本节只简单介绍用卷积神经网络实现手写数字识别任务,以及它带来的效果提升。读者可以将卷积神经网络先简单的理解成是一种比经典的全连接神经网络更强大的模型即可,更详细的原理和实现在接下来的《计算机视觉-卷积神经网络基础》中讲述。
两层卷积和池化的神经网络实现如下所示。
# 定义 SimpleNet 网络结构
import paddle
from paddle.nn import Conv2D, MaxPool2D, Linear
import paddle.nn.functional as F
# 多层卷积神经网络实现
class MNIST(paddle.nn.Layer):def __init__(self):super(MNIST, self).__init__()# 定义卷积层,输出特征通道out_channels设置为20,卷积核的大小kernel_size为5,卷积步长stride=1,padding=2self.conv1 = Conv2D(in_channels=1, out_channels=20, kernel_size=5, stride=1, padding=2)# 定义池化层,池化核的大小kernel_size为2,池化步长为2self.max_pool1 = MaxPool2D(kernel_size=2, stride=2)# 定义卷积层,输出特征通道out_channels设置为20,卷积核的大小kernel_size为5,卷积步长stride=1,padding=2self.conv2 = Conv2D(in_channels=20, out_channels=20, kernel_size=5, stride=1, padding=2)# 定义池化层,池化核的大小kernel_size为2,池化步长为2self.max_pool2 = MaxPool2D(kernel_size=2, stride=2)# 定义一层全连接层,输出维度是1self.fc = Linear(in_features=980, out_features=1)# 定义网络前向计算过程,卷积后紧接着使用池化层,最后使用全连接层计算最终输出# 卷积层激活函数使用Relu,全连接层不使用激活函数def forward(self, inputs):x = self.conv1(inputs)x = F.relu(x)x = self.max_pool1(x)x = self.conv2(x)x = F.relu(x)x = self.max_pool2(x)x = paddle.reshape(x, [x.shape[0], -1])x = self.fc(x)return x
使用MNIST数据集训练定义好的卷积神经网络,如下所示。
说明:
以上数据加载函数load_data返回一个数据迭代器train_loader,该train_loader在每次迭代时的数据shape为[batch_size, 784],因此需要将该数据形式reshape为图像数据形式[batch_size, 1, 28, 28],其中第二维代表图像的通道数(在MNIST数据集中每张图片的通道数为1,传统RGB图片通道数为3)。
#网络结构部分之后的代码,保持不变
def train(model):model.train()#调用加载数据的函数,获得MNIST训练数据集train_loader = load_data('train')# 使用SGD优化器,learning_rate设置为0.01opt = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())# 训练5轮EPOCH_NUM = 10# MNIST图像高和宽IMG_ROWS, IMG_COLS = 28, 28loss_list = []for epoch_id in range(EPOCH_NUM):for batch_id, data in enumerate(train_loader()):#准备数据images, labels = dataimages = paddle.to_tensor(images)labels = paddle.to_tensor(labels)#前向计算的过程predicts = model(images)#计算损失,取一个批次样本损失的平均值loss = F.square_error_cost(predicts, labels)avg_loss = paddle.mean(loss)#每训练200批次的数据,打印下当前Loss的情况if batch_id % 200 == 0:loss = avg_loss.numpy()[0]loss_list.append(loss)print("epoch: {}, batch: {}, loss is: {}".format(epoch_id, batch_id, loss))#后向传播,更新参数的过程avg_loss.backward()# 最小化loss,更新参数opt.step()# 清除梯度opt.clear_grad()#保存模型参数paddle.save(model.state_dict(), 'mnist.pdparams')return loss_listmodel = MNIST()
loss_list = train(model)
相关文章:
通俗神经网络
经典的全连接神经网络 经典的全连接神经网络来包含四层网络:输入层、两个隐含层和输出层,将手写数字识别任务通过全连接神经网络表示,如 图3 所示。 图3:手写数字识别任务的全连接神经网络结构输入层:将数据输入给神经…...

网络工程(一) 简单的配置
网络工程 简单的配置 需求 两台交换机 两台路由器 两台PC AR1配置静态路由 system-view [HUAWEI]sysname ar1 [ar1]interface g 0/0/0 [ar1-G…0/0/0]ip address 192.168.2.1 24 [ar1-G…0/0/0]quit [ar1]interface g 0/0/1 [ar1-G…0/0/1]ip address 192.168.3.1 24 [ar1-G…...

深度剖析数据在内存中的存储(上)
目录 1. 数据类型介绍 1.1 类型的基本归类 2. 整形在内存中的存储 2.1 原码、反码、补码 2.2 大小端介绍 2.3 一道小题 本章重点 1. 数据类型详细介绍 2. 整形在内存中的存储:原码、反码、补码 3. 大小端字节序介绍及判断 4. 浮点型在内存中的存储解析 正文…...
CF Edu 130 A-D vp 补题
CF Edu 130 A-D vp 补题 数模也是终于结束了。开始恢复vp。今天这场vp发挥比上次好一些,三题rank3600。A,B题做的很顺利。C题标记没弄全多WA了两发。D题是个交互题,也是研究了一下。基本思路正确。 题目链接 A. Parkway Walk 贪心 题意&am…...
4707: 统计数字个数
描述给定一个非负整数a,求其中含有数字b的个数(0<a<2147483647,0<b<9)。如100001中含所有0的个数为4,1的个数为2。输入输入数据有多组,每组一行,每行为两个整数,即a和b&…...

ChatGPT 编写模式:如何高效地将思维框架赋予 AI ?
如何理解 Prompt ?Prompt Enginneeringprompt 通常指的是一个输入的文本段落或短语,作为生成模型输出的起点或引导。prompt 可以是一个问题、一段文字描述、一段对话或任何形式的文本输入,模型会基于 prompt 所提供的上下文和语义信息&#x…...

Leetcode力扣秋招刷题路-0099
从0开始的秋招刷题路,记录下所刷每道题的题解,帮助自己回顾总结 99. 恢复二叉搜索树 给你二叉搜索树的根节点 root ,该树中的 恰好 两个节点的值被错误地交换。请在不改变其结构的情况下,恢复这棵树 。 示例 1: 输入…...

消费升级趋势下,平台如何在广告电商模式中攫取新流量
如今电商平台飞速发展,越来越多的人加入电商运营的行列,同行竞争逐渐变得激烈起来,为了能够让平台有更多的展现机会,提升平台的商品转化率,大家都很重视平台的优化,因为一个好的平台可以给自身带来更多的流…...

华为OD机试真题 用 C++ 实现 - 众数和中位数 | 多看题,提高通过率
最近更新的博客 华为OD机试 - 入栈出栈(C++) | 附带编码思路 【2023】 华为OD机试 - 箱子之形摆放(C++) | 附带编码思路 【2023】 华为OD机试 - 简易内存池 2(C++) | 附带编码思路 【2023】 华为OD机试 - 第 N 个排列(C++) | 附带编码思路 【2023】 华为OD机试 - 考古…...

Linux NOR 开发指南
Linux NOR 开发指南 1 简介 编写目的 此文档描述Sunxi NOR 模块的使用方法,为相关人员调试提供指导 适用范围 boot0: 适用于brandy-2.0u-boot: 适用于u-boot-2018kernel: 适用于linux-4.9/linux-5.4 内核 BSP 的开发人员、测试人员 2 模块介绍 2.1 模块功能…...

免费领取丨精算与金融建模行业解决方案白皮书,不要错过!
一、我国精算行业现状 精算学是对人类社会所面临的各种风险及其他客观事务进行量化分析和处理的一门科学。在保险、金融、投资和各类风险管理等许多领域得到广泛应用,尤其在保险和社会保障领域,已成为不可或缺的科学和技术,以保险公司为例&a…...

ideal创建maven项目
前置工作本机安装mavenIdea 设置使用本机maven 工具Settings--->Maven开始创建maven项目创建maven项目,勾选通过模板创建,选择 maven-archetype-webapp 模板GroupId: 公司名倒序ArtifactId: 项目名设置本地maven仓库配置项目文件显示名,和…...

ChatGPT是什么?为何会引爆国内算力需求?
过去十年中,通过“深度学习大算力”从而获得训练模型是实现人工智能的主流技术途径。由于深度学习、数据和算力这三个要素都已具备,全世界掀起了“大炼模型”的热潮,也催生了大批人工智能企业。大模型是人工智能的发展趋势和未来大模型&#…...

【Linux】进程间通信(万字详解)—— 匿名管道 | 命名管道 | System V | 共享内存
🌈欢迎来到Linux专栏~~进程通信 (꒪ꇴ꒪(꒪ꇴ꒪ )🐣,我是Scort目前状态:大三非科班啃C中🌍博客主页:张小姐的猫~江湖背景快上车🚘,握好方向盘跟我有一起打天下嘞!送给自己的一句鸡汤…...

【Database-02】达梦数据库 - DM Manager管理工具安装
1、简介 DM Manager是达梦数据库自带的图形化界面管理工具,在安装达梦数据库的时候就会自动安装。 Linux环境,默认安装路径为:达梦安装目录/tool/manager,如果Linux是安装GUI,那么就可以直接启动使用。 实际大部分使…...

剑指 Offer 42. 连续子数组的最大和
剑指 Offer 42. 连续子数组的最大和 难度:easy\color{Green}{easy}easy 题目描述 输入一个整型数组,数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。 要求时间复杂度为O(n)。 示例1: 输入: nums [-2,1,-3,4,-1,2,1,-5,4] 输…...

双指针 (C/C++)
1. 双指针 双指针算法的核心思想:将暴力解法的时间复杂度,通常是O(N*N),通过某种特殊的性质优化到O(N)。 做题思路:先想想暴力解法的思路,然后分析这道题的特殊性质,一般是单调性。然后得出双指针算法的思路…...

CVE-2023-23752 Joomla未授权访问漏洞分析
漏洞概要 Joomla 在海外使用较多,是一套使用 PHP 和 MySQL 开发的开源、跨平台的内容管理系统(CMS)。 Joomla 4.0.0 至 4.2.7 版本中的 ApiRouter.php#parseApiRoute 在处理用户的 Get 请求时未对请求参数有效过滤,导致攻击者可向 Joomla 服务端点发送包…...

单通道说话人语音分离——Conv-TasNet(Convolutional Time-domain audio separation Network)
单通道说话人语音分离——Conv-TasNet模型(Convolutional Time-domain audio separation Network) 参考文献:《Conv-TasNet: Surpassing Ideal Time-FrequencyMagnitude Masking for Speech Separation》 1.背景 在真实的声学环境中,鲁棒的语音处理通常…...
华为OD机试真题Python实现【环中最长子串】真题+解题思路+代码(20222023)
环中最长子串 题目 给你一个字符串s,首尾相连成一个环形, 请你在环中找出o字符出现了偶数次最长子字符串的长度. 备注: 1 <= s.lenth <= 5x10^5 s只包含小写英文字母 🔥🔥🔥🔥🔥👉👉👉👉👉👉 华为OD机试(Python)真题目录汇总 ## 输入 输入是…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法
树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作,无需更改相机配置。但是,一…...

Unity3D中Gfx.WaitForPresent优化方案
前言 在Unity中,Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染(即CPU被阻塞),这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案: 对惹,这里有一个游戏开发交流小组&…...

通过Wrangler CLI在worker中创建数据库和表
官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...

Day131 | 灵神 | 回溯算法 | 子集型 子集
Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣(LeetCode) 思路: 笔者写过很多次这道题了,不想写题解了,大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...

centos 7 部署awstats 网站访问检测
一、基础环境准备(两种安装方式都要做) bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats࿰…...
在Ubuntu中设置开机自动运行(sudo)指令的指南
在Ubuntu系统中,有时需要在系统启动时自动执行某些命令,特别是需要 sudo权限的指令。为了实现这一功能,可以使用多种方法,包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法,并提供…...

MySQL 8.0 OCP 英文题库解析(十三)
Oracle 为庆祝 MySQL 30 周年,截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始,将英文题库免费公布出来,并进行解析,帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建
华为云FlexusDeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色,华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型,能助力我们轻松驾驭 DeepSeek-V3/R1,本文中将分享如何…...

ArcGIS Pro制作水平横向图例+多级标注
今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作:ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等(ArcGIS出图图例8大技巧),那这次我们看看ArcGIS Pro如何更加快捷的操作。…...
C++八股 —— 单例模式
文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全(Thread Safety) 线程安全是指在多线程环境下,某个函数、类或代码片段能够被多个线程同时调用时,仍能保证数据的一致性和逻辑的正确性…...