基于Android+OpenCV+CNN+Keras的智能手语数字实时翻译——深度学习算法应用(含Python、ipynb工程源码)+数据集(五)
目录
- 前言
- 总体设计
- 系统整体结构图
- 系统流程图
- 运行环境
- 模块实现
- 1. 数据预处理
- 2. 数据增强
- 3. 模型构建
- 4. 模型训练及保存
- 5. 模型评估
- 6. 模型测试
- 系统测试
- 1. 训练准确率
- 2. 测试效果
- 3. 模型应用
- 1)程序下载运行
- 2)应用使用说明
- 3)测试结果
- 相关其它博客
- 工程源代码下载
- 其它资料下载
前言
本项目依赖于Keras深度学习模型,旨在对手语进行分类和实时识别。为了实现这一目标,项目结合了OpenCV库的相关算法,用于捕捉手部的位置,从而能够对视频流和图像中的手语进行实时识别。
首先,项目使用OpenCV库中的算法来捕捉视频流或图像中的手部位置。这可以涉及到肤色检测、运动检测或者手势检测等技术,以精确定位手语手势。
接下来,项目利用CNN深度学习模型,对捕捉到的手语进行分类,经过训练,能够将不同的手语手势识别为特定的类别或字符。
在实时识别过程中,视频流或图像中的手语手势会传递给CNN深度学习模型,模型会进行推断并将手势识别为相应的类别。这使得系统能够实时地识别手语手势并将其转化为文本或其他形式的输出。
总的来说,本项目结合了计算机视觉和深度学习技术,为手语识别提供了一个实时的解决方案。这对于听觉障碍者和手语使用者来说是一个有益的工具,可以帮助他们与其他人更轻松地进行交流和理解。
总体设计
本部分包括系统整体结构图和系统流程图。
系统整体结构图
系统整体结构如图所示。
系统流程图
系统流程如图所示。
运行环境
本部分包括 Python 环境、TensorFlow环境、 Keras环境和Android环境。
模块实现
本项目包括6个模块:数据预处理、数据增强、模型构建、模型训练及保存、模型评估和模型测试,下面分别介绍各模块的功能及相关代码。
1. 数据预处理
在Kaggle上下载相应的数据集,下载地址为https://www.kaggle.com/ardamavi/sign-language-digits-dataset。
详见博客。
2. 数据增强
为方便展示生成图片的效果及对参数进行微调,本项目未使用keras直接训练生成器,而是先生成一个增强过后的数据集,再应用于模型训练。
详见博客。
3. 模型构建
数据加载进模型之后,需要定义模型结构,并优化损失函数。
详见博客。
4. 模型训练及保存
本部分包括模型训练和模型保存的相关代码。
详见博客。
5. 模型评估
由于网络上缺乏手语识别相关模型,为方便在多种模型中选择最优模型,以及进行模型的调优,模型应用于安卓工程之前,需要先在PC设备上使用Python文件进行初步的运行测试,以便验证本方案的手语识别策略是否可行并选择最优的分类模型。
详见博客。
6. 模型测试
评估整体模型可行性后,将手语识别模型应用于Android Studio工程中,完成APP。具体步骤如下。
详见博客。
系统测试
本部分包括训练准确率、测试效果及模型应用。
1. 训练准确率
训练过程的准确率损失变化如图1和图2所示。
2. 测试效果
在初步评估中,使用Spyder编译运行相关评估代码之后,能够在以白色墙壁、各种光照的条件下较好地捕捉手部位置,并准确识别0~9共10个手语手势,如图3和图4所示。
3. 模型应用
本部分包括程序下载运行、应用使用说明和测试结果。
1)程序下载运行
Android项目编译成功后,建议将项目运行到真机上进行测试。模拟器运行较慢,不建议使用。运行到真机方法如下:
(1) 将手机数据线连接到计算机,开启开发者模式,打开USB调试,单击Android项 目的运行按钮,出现连接手机的选项,单击即可。
(2) Android Studio生成apk文件,发送至手机,在手机上下载该apk文件并安装即可。
2)应用使用说明
打开APP,初始界面如图所示。
界面从上至下3个按钮分别为【转到图片识别】、【开始翻译手语】、【停止翻译】。界面依次显示本次的识别结果及置信度、捕捉到的手部区域、累计识别到的句子翻译。
单击【开始识别】按钮,结果如图所示。
单击【转到图片识别】按钮,跳转到图片识别界面。单击【拍照识别】按钮调用摄像头拍照,切换前置及后置摄像头。单击【从相册中选择】即可调出相册界面。选择好图像后,APP将展示所选图片并返回手语识别结果,如图所示。
3)测试结果
手势识别“520’效果如图所示。
图片识别其他手势效果如图所示。
复杂背景效果如图所示。
相关其它博客
基于Android+OpenCV+CNN+Keras的智能手语数字实时翻译——深度学习算法应用(含Python、ipynb工程源码)+数据集(一)
基于Android+OpenCV+CNN+Keras的智能手语数字实时翻译——深度学习算法应用(含Python、ipynb工程源码)+数据集(二)
基于Android+OpenCV+CNN+Keras的智能手语数字实时翻译——深度学习算法应用(含Python、ipynb工程源码)+数据集(三)
基于Android+OpenCV+CNN+Keras的智能手语数字实时翻译——深度学习算法应用(含Python、ipynb工程源码)+数据集(四)
工程源代码下载
详见本人博客资源下载页
其它资料下载
如果大家想继续了解人工智能相关学习路线和知识体系,欢迎大家翻阅我的另外一篇博客《重磅 | 完备的人工智能AI 学习——基础知识学习路线,所有资料免关注免套路直接网盘下载》
这篇博客参考了Github知名开源平台,AI技术平台以及相关领域专家:Datawhale,ApacheCN,AI有道和黄海广博士等约有近100G相关资料,希望能帮助到所有小伙伴们。
相关文章:

基于Android+OpenCV+CNN+Keras的智能手语数字实时翻译——深度学习算法应用(含Python、ipynb工程源码)+数据集(五)
目录 前言总体设计系统整体结构图系统流程图 运行环境模块实现1. 数据预处理2. 数据增强3. 模型构建4. 模型训练及保存5. 模型评估6. 模型测试 系统测试1. 训练准确率2. 测试效果3. 模型应用1)程序下载运行2)应用使用说明3)测试结果 相关其它…...

Linux: Cache 简介
文章目录 1. 前言2. 背景3. Cache 硬件基础3.1 什么是 Cache ?3.2 Cache 工作原理3.3 Cache 层级架构3.4 内存架构中各级访问速度概览3.5 Cache 分类3.6 Cache 的 查找 和 组织方式3.6.1 Cache 组织相关术语3.6.2 Cache 查找3.6.2.1 Cache 查找过程概述3.6.2.2 Cach…...
常见位运算公式使用场景
判断奇偶性:数值 x 为偶数当且仅当 (x & 1) 0。数值 x 为奇数当且仅当 (x & 1) 1。 交换两个数:使用异或操作符 ^ 进行交换。假设有变量 a 和 b,则可以使用以下公式交换它们的值: a a ^ b; b a ^ b; a a ^ b;取绝…...

virtualbox配置ubuntu1804虚拟机相关流程
virtualbox配置ubuntu1804虚拟机相关流程 相关版本能解决的问题安装流程1:新建虚拟机安装流程2:配置虚拟机安装流程3:安装虚拟机系统安装流程4:设置ubuntu 相关版本 virtualbox使用VirtualBox官网下载的6.1.34 r150636 版。ubunt…...

防火墙基本概念
思维导图 1. 什么是防火墙? 网络在远古时期没有防火墙大家都是联通的,any to any,没有防火墙的时代就相当于没有门的房子, 没有城墙的城市。 路由器与交换机的本质是转发,防火墙的本质是控制和防护。 防火墙ÿ…...

易点易动固定资产管理平台:打通BMP,实现高效流程管理与全生命周期管理
在现代企业管理中,固定资产的流程管理和全生命周期管理是提高效率和降低成本的关键。易点易动固定资产管理平台通过打通BMP(Business Process Management)系统,实现了固定资产流程管理和全生命周期高效化管理的目标。本文将详细介…...

uniapp webview实现双向通信
需求:uniapp webview嵌套一个h5 实现双向通信 uniapp 代码 <template><view><web-view src"http://192.168.3.150:9003/" message"onMessage"></web-view></view> </template><script>export defau…...

Linux动态库
定义:动态函数库,是在程序执行时动态(临时)由目标程序去调用 优点: 调用时不复制,程序运行时动态加载到内存,供程序调用,系统只加载一次,多个程序可以共用,…...

ESP-IDF学习——1.环境安装与hello-world
ESP-IDF学习——1.环境安装与hello-world 0.前言一、环境搭建1.官方IDE工具2.vscode图形化配置 二、示例工程三、自定义工程四、点灯五、总结 0.前言 最近在学习freertos,但由于买的书还没到,所以先捣鼓捣鼓ESP-IDF,因为这个比Arduino更接近底…...

【算法】二分答案
文章目录 相关链接什么时候使用二分答案?题目列表最大化最小化相关题目列表📕2439. 最小化数组中的最大值解法1——二分答案解法2——分类讨论O(n) 2513. 最小化两个数组中的最大值(二分答案lcm容斥原理)🐂好题&#x…...

阿曼市场最全开发攻略,看这一篇就够了
中东是一个充满外贸机遇的市场,已经成为很多外贸人重点开发的市场。 阿曼的海岸南方和东方临阿拉伯海,东北方则抵阿曼湾。阿曼因为扼守着世界上最重要的石油输出通道——波斯湾和阿曼湾之间的霍尔木兹海峡,所以地理位置非常重要,…...

探讨UUID和Secrets:确保唯一性与数据安全的利器
😀前言 在现代软件开发中,唯一标识符(UUID)和机密信息的处理是至关重要的。UUID是用于唯一标识数据记录和对象的128位值,确保了全球范围内的唯一性。同时,Python的secrets模块为处理机密信息提供了强大的随…...

06-Redis缓存高可用集群
上一篇:05-Redis高可用集群之水平扩展 1.集群方案比较 哨兵模式 在redis3.0以前的版本要实现集群一般是借助哨兵sentinel工具来监控master节点的状态,如果master节点异常,则会做主从切换,将某一台slave作为master,…...
LCP 18.早餐组合
题目来源: leetcode题目,网址:LCP 18. 早餐组合 - 力扣(LeetCode) 解题思路: 按序遍历饮料数组,二分查找符合要求 staple 中满足要求的最大值所在位置。最后返回所有*(最大位置…...

Tomcat调优【精简版】
Tomcat调优 优化Tomcat内存分配 调整Tomcat启动脚本contalina.sh,设置tomcat启动时分配的内存很可使用的最大内存; CATALINA_OPTS 调整Tomcat线程池 Tomcat默认使用的线程池:ThreadPoolExecutor 可以通过修改server.xml的 Connector 节点下的 maxThreads、minSpareThread…...

通过NDK编译C程序运行在iMX6q开发板上
在之前想要在Ubuntu系统中编译c语言程序为可执行文件并放在装有Android6.0.1系统的imx6q开发板上运行,采用gcc编译器进行编译的时候,虽然可以生成可执行文件但是却出现了错误,最终采用手段仍然无法在板子上运行,但是转换思路后&am…...

【学习笔记】Java 一对一培训(2.1)Java基础语法
【学习笔记】Java 一对一培训(2.1)Java基础语法 关键词:Java、Spring Boot、Idea、数据库、一对一、培训、教学本文主要内容含Java简介、Java基础语法、Java对象和类、Java基本数据类型、Java变量类型、Java修饰符计划2小时完成,…...

外贸独立站哪家好?推荐的独立站建站平台?
如何选外贸独立站搭建系统?创建贸易网站的工具有哪些? 在如今全球贸易不断蓬勃发展的背景下,外贸独立站成为许多企业拓展国际市场的首选之一。然而,要想在竞争激烈的市场中脱颖而出,选择一家合适的外贸独立站服务提供…...

六、变量与常量
变量与常量 1.变量与常量1.1标识符和关键字1.1.1.标识符1.1.2.关键字 1.2.声明变量1.3.声明常量1.4.变量的有效范围1.4.1.成员变量1.4.2.局部变量 1.5.训练11.6.训练2 —————————————————————————————————————————————————— …...

Fork() 函数:“父” 与 “子” 进程的交互(进程的创建)
阅读导航 前言一、fork函数初识1. 基本概念2. fork函数返回值 二、fork函数的写时拷贝三、总结温馨提示 前言 前面我们讲了C语言的基础知识,也了解了一些数据结构,并且讲了有关C的一些知识,也学习了一些Linux的基本操作,也了解并…...

Linux-07 ubuntu 的 chrome 启动不了
文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了,报错如下四、启动不了,解决如下 总结 问题原因 在应用中可以看到chrome,但是打不开(说明:原来的ubuntu系统出问题了,这个是备用的硬盘&a…...

【Java_EE】Spring MVC
目录 Spring Web MVC 编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 编辑参数重命名 RequestParam 编辑编辑传递集合 RequestParam 传递JSON数据 编辑RequestBody …...

select、poll、epoll 与 Reactor 模式
在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。 一、I…...

处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的
修改bug思路: 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑:async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...

Golang——6、指针和结构体
指针和结构体 1、指针1.1、指针地址和指针类型1.2、指针取值1.3、new和make 2、结构体2.1、type关键字的使用2.2、结构体的定义和初始化2.3、结构体方法和接收者2.4、给任意类型添加方法2.5、结构体的匿名字段2.6、嵌套结构体2.7、嵌套匿名结构体2.8、结构体的继承 3、结构体与…...

Elastic 获得 AWS 教育 ISV 合作伙伴资质,进一步增强教育解决方案产品组合
作者:来自 Elastic Udayasimha Theepireddy (Uday), Brian Bergholm, Marianna Jonsdottir 通过搜索 AI 和云创新推动教育领域的数字化转型。 我们非常高兴地宣布,Elastic 已获得 AWS 教育 ISV 合作伙伴资质。这一重要认证表明,Elastic 作为 …...

医疗AI模型可解释性编程研究:基于SHAP、LIME与Anchor
1 医疗树模型与可解释人工智能基础 医疗领域的人工智能应用正迅速从理论研究转向临床实践,在这一过程中,模型可解释性已成为确保AI系统被医疗专业人员接受和信任的关键因素。基于树模型的集成算法(如RandomForest、XGBoost、LightGBM)因其卓越的预测性能和相对良好的解释性…...
电脑桌面太单调,用Python写一个桌面小宠物应用。
下面是一个使用Python创建的简单桌面小宠物应用。这个小宠物会在桌面上游荡,可以响应鼠标点击,并且有简单的动画效果。 import tkinter as tk import random import time from PIL import Image, ImageTk import os import sysclass DesktopPet:def __i…...

轻量级Docker管理工具Docker Switchboard
简介 什么是 Docker Switchboard ? Docker Switchboard 是一个轻量级的 Web 应用程序,用于管理 Docker 容器。它提供了一个干净、用户友好的界面来启动、停止和监控主机上运行的容器,使其成为本地开发、家庭实验室或小型服务器设置的理想选择…...
比特币:固若金汤的数字堡垒与它的四道防线
第一道防线:机密信函——无法破解的哈希加密 将每一笔比特币交易比作一封在堡垒内部传递的机密信函。 解释“哈希”(Hashing)就是一种军事级的加密术(SHA-256),能将信函内容(交易细节…...