多输入多输出 | MATLAB实现PSO-LSSVM粒子群优化最小二乘支持向量机多输入多输出
多输入多输出 | MATLAB实现PSO-LSSVM粒子群优化最小二乘支持向量机多输入多输出
目录
- 多输入多输出 | MATLAB实现PSO-LSSVM粒子群优化最小二乘支持向量机多输入多输出
- 预测效果
- 基本介绍
- 程序设计
- 往期精彩
- 参考资料
预测效果





基本介绍
MATLAB实现PSO-LSSVM粒子群优化最小二乘支持向量机多输入多输出
1.data为数据集,10个输入特征,3个输出变量。
2.main.m为主程序文件。
3.命令窗口输出MBE、MAE和R2,可在下载区获取数据和程序内容。
程序设计
- 完整程序和数据下载方式:私信博主回复MATLAB实现PSO-LSSVM粒子群优化最小二乘支持向量机多输入多输出。
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 参数初始化
c1 = 4.494; % 学习因子
c2 = 4.494; % 学习因子
maxgen = 50; % 种群更新次数
sizepop = 5; % 种群规模
Vmax = 1.0; % 最大速度
Vmin = -1.0; % 最小速度
popmax = 1.0; % 最大边界
popmin = -1.0; % 最小边界
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
for i = 1 : sizepoppop(i, :) = rands(1, numsum); % 初始化种群V(i, :) = rands(1, numsum); % 初始化速度fitness(i) = fun(pop(i, :), hiddennum, net, p_train, t_train);
end
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 个体极值和群体极值
[fitnesszbest, bestindex] = min(fitness);
zbest = pop(bestindex, :); % 全局最佳
gbest = pop; % 个体最佳
fitnessgbest = fitness; % 个体最佳适应度值
BestFit = fitnesszbest; % 全局最佳适应度值
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 迭代寻优
for i = 1 : maxgenfor j = 1 : sizepop% 速度更新V(j, :) = V(j, :) + c1 * rand * (gbest(j, :) - pop(j, :)) + c2 * rand * (zbest - pop(j, :));V(j, (V(j, :) > Vmax)) = Vmax;V(j, (V(j, :) < Vmin)) = Vmin;% 种群更新pop(j, :) = pop(j, :) + 0.2 * V(j, :);pop(j, (pop(j, :) > popmax)) = popmax;pop(j, (pop(j, :) < popmin)) = popmin;% 适应度值fitness(j) = fun(pop(j, :), hiddennum, net, p_train, t_train);endfor j = 1 : sizepop% 个体最优更新if fitness(j) < fitnessgbest(j)gbest(j, :) = pop(j, :);fitnessgbest(j) = fitness(j);endendBestFit = [BestFit, fitnesszbest];
end
往期精彩
MATLAB实现RBF径向基神经网络多输入多输出预测
MATLAB实现BP神经网络多输入多输出预测
MATLAB实现DNN神经网络多输入多输出预测
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/116377961
[2] https://blog.csdn.net/kjm13182345320/article/details/127931217
[3] https://blog.csdn.net/kjm13182345320/article/details/127894261
相关文章:
多输入多输出 | MATLAB实现PSO-LSSVM粒子群优化最小二乘支持向量机多输入多输出
多输入多输出 | MATLAB实现PSO-LSSVM粒子群优化最小二乘支持向量机多输入多输出 目录 多输入多输出 | MATLAB实现PSO-LSSVM粒子群优化最小二乘支持向量机多输入多输出预测效果基本介绍程序设计往期精彩参考资料 预测效果 基本介绍 MATLAB实现PSO-LSSVM粒子群优化最小二乘支持向…...
scrapyd-完整细节
安装scrapyd服务 pip install scrapyd 安装scrapyd客户端 pip install scrapyd-client 安装好以后重新开启cmd输入命令 scrapyd 出现以下结果代表安装成功 打开浏览器输入网址,即可打开界面客户端 http://127.0.0.1:6800/ 回车后显示一下ok内容代表部署成功 回到服…...
【iOS逆向与安全】插件开发之某音App直播间自动发666
1.目标 由于看直播的时候主播叫我发 666,支持他,我肯定支持他呀,就一直发,可是后来发现太浪费时间了,能不能做一个直播间自动发 666 呢?于是就花了几分钟做了一个。 2.操作环境 越狱iPhone一台 frida ma…...
AI Studio星河社区生产力实践:基于文心一言快速搭建知识库问答
还在寻找基于文心一言搭建本地知识库问答的方案吗?AI Studio星河社区带你实战演练(支持私有化部署)! 相信对于大语言模型(LLM)有所涉猎的朋友,对于“老网红”知识库问答不会陌生。自从大模型爆…...
http1和http2的主要区别
主要有四个方面: 二进制分帧多路复用服务器主动推送头部压缩 将前两点结合来说,首先 二进制分帧 帧:HTTP/2 数据通信的最小单位; 消息:HTTP/2 中,例如在请求和响应等操作中,消息由一个或多个…...
一文了解水雨情在线监测站的优势
随着全球气候变化的加剧,水雨情的监测变得越来越重要。水雨情监测站作为现代环境监测系统的重要组成部分,其优势在实现环境智能监控方面得到了充分体现。 实时监测,数据准确 水雨情监测站通过先进的技术设备和智能传感器,能够实时…...
windows11中安装curl
windows11中安装curl 1.下载curl curl 下载地址:curl 2.安装curl 2.1.解压下载的压缩包 解压文件到 C:\Program Files\curl-8.3.0_1-win64-mingw 目录 2.2.配置环境变量 WINS 可打开搜索栏,输入“编辑系统环境变量” 并按回车。 3.可能遇到的问题 3…...
小谈设计模式(5)—开放封闭原则
小谈设计模式(5)—开放封闭原则 专栏介绍专栏地址专栏介绍 开放封闭原则核心思想关键词概括扩展封闭 解释抽象和接口多态 代码示例代码解释 优缺点优点可扩展性可维护性可复用性高内聚低耦合 缺点抽象设计的复杂性需要预留扩展点可能引入过度设计 总结 专…...
计算机视觉与深度学习-全连接神经网络-训练过程-欠拟合、过拟合和Dropout- [北邮鲁鹏]
目录标题 机器学习的根本问题过拟合overfitting泛化能力差。应对过拟合最优方案次优方案调节模型大小约束模型权重,即权重正则化(常用的有L1、L2正则化)L1 正则化L2 正则化对异常值的敏感性随机失活(Dropout)随机失活的问题 欠拟合 机器学习的根本问题 机器学习的根…...
SwiftUI Swift iOS iPadOS 实现更改 App 图标
Xcode: 14.3.1 更改 App 图标 淘宝,支付宝,有道翻译有时候会随着运营活动去调整图标,比如 双 11。(这个很简单,替换一下 AppIcon 就可以了)Github App 提供了多套图标可以修改。(需要配置 &…...
Java————List
一 、顺序表和链表 线性表(linear list)是n个具有相同特性的数据元素的有限序列。 线性表是一种在实际中广泛使用的数据结构, 常见的线性表:顺序表、链表、栈、队列… 线性表在逻辑上是线性结构,也就说是连续的一条直…...
uniapp 触底加载
方式一 onReachBottomDistance 缺点:需要整个页面滑动,局部滑动触发不了 { // pages.json // 路由下增加 onReachBottomDistance "path": "detailed/detailed","style": {"navigationBarTitleText": "收…...
大模型赛道如何实现华丽的弯道超车
🚀欢迎来到本文🚀 🍉个人简介:陈童学哦,目前学习C/C、算法、Python、Java等方向,一个正在慢慢前行的普通人。 🏀系列专栏:陈童学的日记 💡其他专栏:CSTL&…...
CAN总线物理层
本文的目的并不是为了介绍或普及CAN总线相关知识,而是为了了解CAN总线,进而为CAN通信一致性测试做知识储备。 CAN,控制器局域网,全称:Controller Area Network。1986年,由德国Bosch公司为汽车开发的网络技术,主要用于汽车的监测与控制,目的为适应汽车“减少线束的数量…...
中兴面试-Java开发
1、Springboot框架,yarn是怎么配置的 Spring Boot 本身没有直接的配置或集成与 YARN (Yet Another Resource Negotiator) 的特性,YARN是Hadoop的一个资源管理和作业调度平台。如果你想在 YARN 上运行Spring Boot应用,你需要考虑将你的Spring…...
浅谈 React 与 Vue 更新机制的差异
前言 哈喽,大家好,我是 Baker !🎉 对于前端的 Vue 和 React 相信大家并不陌生,这两个库有着截然不同的设计思想和发展目标,对于我们上层使用者来说,研究它们的差异不仅让我们更加深入的去理解…...
Delft3D水动力与泥沙运动模拟实践技术应用
水体中泥沙运动是关系到防洪,调水等方面的重要问题,也是水利和水环境领域科研热点之一。水利数值模型,在环境影响评价、防洪规划等方面也有着广泛的应用。荷兰Delft研究所开发的Delft3D模型是世界上最先进的水动力之一,能够运用于…...
Linux 本地Yearning SQL 审核平台远程访问
文章目录 前言1. Linux 部署Yearning2. 本地访问Yearning3. Linux 安装cpolar4. 配置Yearning公网访问地址5. 公网远程访问Yearning管理界面6. 固定Yearning公网地址 前言 Yearning 简单, 高效的MYSQL 审计平台 一款MYSQL SQL语句/查询审计工具,为DBA与开发人员使用…...
Redis集群(Cluster)
1. 什么是集群 广义的集群:只要是多台机器,构成一个分布式系统,就可以称为一个“集群”。像前面的主从结构,哨兵模式都是“广义的集群”狭义的集群:redis提供的集群模式,这个集群模式主要解决存储空间不足…...
Scapy 解析 pcap 文件从HTTP流量中提取图片
Scapy 解析 pcap 文件从HTTP流量中提取图片 前言一、网络环境示例二、嗅探流量示例三、pcap 文件处理最后参考 作者:高玉涵 时间:2023.9.17 10:25 环境:Linux kali 5.15.0-kali3-amd64,Python 3.11.4,scapy…...
手游刚开服就被攻击怎么办?如何防御DDoS?
开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...
React Native 开发环境搭建(全平台详解)
React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...
Oracle查询表空间大小
1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...
PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...
centos 7 部署awstats 网站访问检测
一、基础环境准备(两种安装方式都要做) bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats࿰…...
基于服务器使用 apt 安装、配置 Nginx
🧾 一、查看可安装的 Nginx 版本 首先,你可以运行以下命令查看可用版本: apt-cache madison nginx-core输出示例: nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...
Linux简单的操作
ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...
Module Federation 和 Native Federation 的比较
前言 Module Federation 是 Webpack 5 引入的微前端架构方案,允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...
CMake控制VS2022项目文件分组
我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...
