全球变暖问题(floodfill 处理联通块问题)
全球变暖问题
文章目录
- 全球变暖问题
- 前言
- 题目描述
- 题目分析
- 边界问题的考虑
- 岛屿是否被淹没判断:
- 如何寻找联通块:
- 代码
- 预告
前言
之前我们介绍了 bfs算法
在二维,三维地图中的应用,现在我们接续进行拓展,解锁floodfill
算法,准确的来说是用 bfs算法
解决联通块问题。后续还会更新 bfs算法
有关内容,喜欢的小伙伴可以点个关注啦。
题目描述
你有一张某海域 N×N 像素的照片,”.”表示海洋、”#”表示陆地,如下所示:
.......
.##....
.##....
....##.
..####.
...###.
.......
其中”上下左右”四个方向上连在一起的一片陆地组成一座岛屿,例如上图就有 2 座岛屿。
由于全球变暖导致了海面上升,科学家预测未来几十年,岛屿边缘一个像素的范围被海水淹没。
具体来说如果一块陆地像素与海洋相邻(上下左右四个相邻像素中有海洋),它就会被淹没。
例如上图中的海域未来会变成如下样子:
.......
.......
.......
.......
....#..
.......
.......
请你计算:依照科学家的预测,照片中有多少岛屿会被完全淹没。
输入格式
第一行包含一个整数N。
以下 N 行 N 列,包含一个由字符”#”和”.”构成的 N×N 字符矩阵,代表一张海域照片,”#”表示陆地,”.”表示海洋。
照片保证第 1 行、第 1 列、第 N 行、第 N 列的像素都是海洋。
输出格式
一个整数表示答案。
数据范围
1≤N≤1000
输入样例1:
7
.......
.##....
.##....
....##.
..####.
...###.
.......
输出样例1:
1
输入样例2:
9
.........
.##.##...
.#####...
.##.##...
.........
.##.#....
.#.###...
.#..#....
.........
输出样例2:
1
题目分析
边界问题的考虑
照片保证第 1 行、第 1 列、第 N 行、第 N 列的像素都是海洋。
这里想要不考虑边界问题,输入的初始下标要设为 1 开始,这样就可以保证数组不越界,并且由题目的意思可得,外围的圈都是海洋,只要下标从1 开始,我们就可以不用考虑bfs算法当中的边界问题。
岛屿是否被淹没判断:
如何判定这是一个不会被淹没的岛屿呢?
首先我们要明白联通块的概念------连在一起的快;
接着我们定义一个沿岸元素
具体来说如果一块陆地像素与海洋相邻(上下左右四个相邻像素中有海洋),它就会被淹没。
也就是说只要一个‘#’
旁边有海洋,我们就可以认定该陆地元素‘#’
是沿岸元素块。
只要我们的联通块的所有总数=沿岸元素的所有总数,那么我们就可以判定这是个会被淹没的岛屿
如何寻找联通块:
答案就是利用我们的 bfs算法
将目标元素进行宽度优先搜索,将搜索到的的‘#’
,标记,继续搜索那些没有被标记的‘#’
。
代码
详细的解释都在代码的注释里头啦
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
const int N =1e3 + 7;
char g[N][N];//用来存放地图
bool st[N][N];//用来统计那些点已经被搜索过了
int dx[4]={-1,0,1,0};
int dy[4]={0,1,0,-1};
typedef pair<int,int> PII;
void bfs(int i,int j,int &total,int &bound){
//这里使用的引用符号是&,要将值传回去。st[i][j]=true;queue<PII> q;q.push({i,j});while(!q.empty()){auto t=q.front();q.pop();total++;bool flag=false;//这个flag用于沿岸元素的判断for(int i=0;i<4;i++){int x=t.first+dx[i];int y=t.second+dy[i];if(g[x][y]=='#' && !st[x][y]){q.push({x,y});st[x][y]=true;}if(g[x][y]=='.'){//只要有一个旁边元素是‘.’就可以判断其为沿岸元素flag=true;}}if(flag) bound++;//如果判断成功,沿岸元素++}
}
int main(){int n;cin>>n;memset(g,'.',sizeof g);//在题目分析中的说明里,//这个代码可要可不要,假如没有题目中的话,我们就要加上这行代码了for(int i=1;i<=n;i++) cin>>g[i];int res=0;for(int i=1;i<=n;i++){for(int j=1;j<=n;j++){if(!st[i][j] && g[i][j]=='#'){int total=0,bound=0;bfs(i,j,total,bound);if(total==bound) res++;//判断这个岛屿是否会被淹没}}}cout<<res<<endl;return 0;
}
预告
后期还放出大学生 web大作业【制作一个门户网站】,感兴趣的小伙伴可以点个关注啦
相关文章:
全球变暖问题(floodfill 处理联通块问题)
全球变暖问题 文章目录 全球变暖问题前言题目描述题目分析边界问题的考虑岛屿是否被淹没判断:如何寻找联通块: 代码预告 前言 之前我们介绍了 bfs算法在二维,三维地图中的应用,现在我们接续进行拓展,解锁floodfill 算…...

由于找不到vcruntime140_1.dll怎么修复,详细修复步骤分享
在使用电脑过程中,可能会遇到一些错误提示,其中之一是找不到vcruntime140_1.dll的问题。这使得许多用户感到困扰,不知道该如何解决这个问题。小编将详细介绍vcruntime140_1.dll的作用以及解决找不到该文件的方法,帮助你摆脱困境。…...
算法 三数之和-(双指针)
牛客网: BM54 题目: 数组中所有不重复的满足三数之和等于0的数,非递减形式。 思路: 数组不小于3。不重复非递减,需先排序。使用idx从0开始遍历到n-2, 如果出现num[idx]num[idx-1]的情况,忽略继续下一个idx;令left idx1, right …...

AB实验总结
互联网有线上系统,可做严格的AB实验。传统行业很多是不能做AB实验的。 匹配侧是采用严格的AB实验来进行模型迭代,而精细化定价是不能通过AB实验来评估模型好坏,经历过合成控制法、双重差分法,目前采用双重差分法来进行效果评估。…...
sklearn包中对于分类问题,如何计算accuracy和roc_auc_score?
1. 基础条件 import numpy as np from sklearn import metricsy_true np.array([1, 7, 4, 6, 3]) y_prediction np.array([3, 7, 4, 6, 3])2. accuracy_score计算 acc metrics.accuracy_score(y_true, y_prediction)这个没问题 3. roc_auc_score计算 The binary and mul…...
python温度转换程序
1.使用pycharm运行温度转换程序,尝试将温度单位设在前面 2.参照温度转换程序,自己写一个关于货币转换、长度转换、重量转换或者面积转换的程序 循环函数 def convertemperature():temperature ""while (temperature ! "q"):temperature in…...
Vue2中10种组件通信方式和实践技巧
目录 1,props / $emit1.1,一个需求方法1方法2 1.2,v-model 和 .syncv-model.sync 2,$children / $parent3,ref4,$attrs / $listeners$attrs$listenersinheritAttrs1.1 的问题的第3种解决方法 5,…...

Flutter flutter.minSdkVersion的实际文件位置
Flutter 项目的Android相关版本号配置: flutter.minSdkVersion 的版本号配置文件实际路径: …/flutter_sdk/packages/flutter_tools/gradle/src/main/groovy/flutter.groovy Flutter版本号如下: bzbMacBook-Pro ccsmec % flutter --version …...

python生成PDF报告
前言 最近接到了一个需求-将项目下的样本信息汇总并以PDF的形式展示出来,第一次接到这种PDF的操作的功能,还是有点慌的,还好找到了reportlab这个包,可以定制化向PDF写内容! 让我们由简入深进行讲解 一、reportlab是…...

在visual studio里安装Python并创建python工程
在2009年,云计算开始发力,Python、R、Go这些天然处理批量计算的语言也迅猛发展。微软在2010年,把Python当成一个语言包插件,集成到了visual studio 2010里。在"云优先,移动优先"的战略下,于2015年…...
AIGC(生成式AI)试用 6 -- 从简单到复杂
从简单到复杂,这样的一个用例该如何设计? 之前浅尝试用,每次尝试也都是由浅至深、由简单到复杂。 一点点的“喂”给生成式AI主题,以测试和验证生成式AI的反馈。 AIGC(生成式AI)试用 1 -- 基本文本_Role…...

竞赛 基于深度学习的人脸识别系统
前言 🔥 优质竞赛项目系列,今天要分享的是 基于深度学习的人脸识别系统 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/…...
uniapp:APP开发,后台保活
前言: 在ios中,软件切换至后台、手机息屏,过了十来秒软件就会被系统挂起,APP内的任务就不能继续执行;在android中,默认情况下,软件在后台运行的时候,触发某些特定条件的情况下&…...

vue2 项目中嵌入视频
案例: 代码: <template><div class"schematicDiagramIndex"><el-container><el-aside width"20rem"> <!-- <h4 style"font-size: 18px">视频演示</h4>--><div styl…...
第二章 进程与线程 十二、进程同步与进程互斥
目录 一、进程同步 1、定义 二、进程互斥 1、定义 2、四个部分 3、原则 一、进程同步 1、定义 进程同步是指在多个进程之间协调执行顺序的一种机制,使得进程按照一定的顺序执行,以避免出现不一致的情况。常见的实现方式有信号量、管程、屏障等。…...
Linux内核链表(list)移植到任意平台
一、前言 linux内核链表在include/linux/list.h文件中,内核中实现的链表比较简洁,实用性很强,因此想把它单独移植出来使用。 内核中的代码只能使用gnuc编译器编译,stdc编译器编译是会报错的,主要是因为typeof这个宏是…...

【操作系统】聊聊什么是CPU上下文切换
对于linux来说,本身就是一个多任务运行的操作系统,运行远大于CPU核心数的程序,从用户视角来看是并发执行,而在CPU视角看其实是将不同的CPU时间片进行分割,每个程序执行一下,就切换到别的程序执行。那么这个…...
CMake教程-第 2 步 添加一个库
CMake教程-第 2 步 添加一个库 1 CMake教程介绍2 学习步骤Step 1: A Basic Starting PointStep 2: Adding a LibraryStep 3: Adding Usage Requirements for a LibraryStep 4: Adding Generator ExpressionsStep 5: Installing and TestingStep 6: Adding Support for a Testin…...
DS 顺序表--类实现(C++数据结构题)
实现顺序表的用 C 语言和类实现顺序表 属性包括:数组、实际长度、最大长度(设定为 1000 ) 操作包括:创建、插入、删除、查找 类定义参考 #include<iostream> using namespace std; #define ok 0 #define error -1 // 顺…...

0.UML
1.图 1.1类图含义 第一层显示类的名称,如果是抽象类,则就用斜体显示。第二层是类的特性,通常就是字段和属性。第三层是类的操作,通常是方法或行为。注意前面的符号, ,表示public,-,表示private,#,表示protected。 1.2接口图 与类图的区别主要是顶端有<< interface >…...
[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解
突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 安全措施依赖问题 GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
k8s从入门到放弃之Ingress七层负载
k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...
Spring Boot面试题精选汇总
🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...
在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用
1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...
css3笔记 (1) 自用
outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size:0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格ÿ…...
C++八股 —— 单例模式
文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全(Thread Safety) 线程安全是指在多线程环境下,某个函数、类或代码片段能够被多个线程同时调用时,仍能保证数据的一致性和逻辑的正确性…...
【学习笔记】erase 删除顺序迭代器后迭代器失效的解决方案
目录 使用 erase 返回值继续迭代使用索引进行遍历 我们知道类似 vector 的顺序迭代器被删除后,迭代器会失效,因为顺序迭代器在内存中是连续存储的,元素删除后,后续元素会前移。 但一些场景中,我们又需要在执行删除操作…...
Kafka主题运维全指南:从基础配置到故障处理
#作者:张桐瑞 文章目录 主题日常管理1. 修改主题分区。2. 修改主题级别参数。3. 变更副本数。4. 修改主题限速。5.主题分区迁移。6. 常见主题错误处理常见错误1:主题删除失败。常见错误2:__consumer_offsets占用太多的磁盘。 主题日常管理 …...
深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向
在人工智能技术呈指数级发展的当下,大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性,吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型,成为释放其巨大潜力的关键所在&…...