当前位置: 首页 > news >正文

求二维子数组的和(剖析)

文章目录

  • 🐒个人主页
  • 🏅JavaSE系列专栏
    • 📖前言:本篇剖析一下二维子数组求和
    • 规则:

🐒个人主页

🏅JavaSE系列专栏

📖前言:本篇剖析一下二维子数组求和

规则:

这是一个4 X 4的二维数组a[][]
在这里插入图片描述
假设再来一个4 X 4的空数组,
第一个位置是a[0][0],(前一个元素的和)
第二个位置是a[0][0]+a[0][1]+a[0][2],(前两个元素的和)
第三个位置是a[0][0]+a[0][1]+a[0][2],(前三个元素的和)
第四个位置是a[0][0]+a[0][1]+a[0][2]+a[0][3],
第五个位置是a[0][0]+a[1][0],

在这里插入图片描述

那么用java程序应该如何实现呢:
在这里插入图片描述
比如说:求值为7这个位置的和:1+2+3+5+6+7
在这里插入图片描述
可以分解为:三个红色的-一个重复的绿色
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
即:在这里插入图片描述

  //初始化数组int [][] a=new int[2][2];for (int i = 0; i <a.length ; i++) {for (int j = 0; j <a[i].length ; j++) {a[i][j]=1;}System.out.println(Arrays.toString(a[i]));}//存储求和的数组int[][] sum=new int[a.length+1][a[0].length+1];//这里需要额外加一行+加一列for (int i = 1; i <sum.length ; i++) {for (int j = 1; j <sum.length ; j++) {//核心语句:sum[i][j]=sum[i][j-1]+sum[i-1][j]-sum[i-1][j-1]+a[i-1][j-1];//行成立的+列成立的-重合的+新增的}}//打印出结果for (int i = 0; i <sum.length ; i++) {System.out.println(Arrays.toString(sum[i]));}

在这里插入图片描述

相关文章:

求二维子数组的和(剖析)

文章目录 &#x1f412;个人主页&#x1f3c5;JavaSE系列专栏&#x1f4d6;前言&#xff1a;本篇剖析一下二维子数组求和规则&#xff1a; &#x1f412;个人主页 &#x1f3c5;JavaSE系列专栏 &#x1f4d6;前言&#xff1a;本篇剖析一下二维子数组求和 规则&#xff1a; 这…...

无(低)代码开发思路介绍

无代码或者低代码开发的思路,是通过非编程代码,而是基于页面拖拉拽的方式来实现创建web应用的功能。 作为程序员我们知道私有云公有云已经实现了基础设施的web方式管理。DEVOPS把代码发布,管理也实现了web方式管理。那么我们很容易能够想到,只要把拖拉拽出来的项目自动化部…...

代码随想录刷题 Day14

144.二叉树的前序遍历(opens new window) 要注意下创建函数参数传递不是很理解 class Solution { public:void tranversal(TreeNode* s, vector<int> &b) {if (s NULL) {return;}b.push_back(s->val);tranversal(s->left, b);tranversal(s->right, b);}v…...

二分类问题的解决利器:逻辑回归算法详解(一)

文章目录 &#x1f34b;引言&#x1f34b;逻辑回归的原理&#x1f34b;逻辑回归的应用场景&#x1f34b;逻辑回归的实现 &#x1f34b;引言 逻辑回归是机器学习领域中一种重要的分类算法&#xff0c;它常用于解决二分类问题。无论是垃圾邮件过滤、疾病诊断还是客户流失预测&…...

docker alpine镜像中遇到 not found

1.问题&#xff1a; docker alpine镜像中遇到 sh: xxx: not found 例如 # monerod //注&#xff1a;此可执行文件已放到/usr/local/bin/ sh: monerod: not found2.原因 由于alpine镜像使用的是musl libc而不是gnu libc&#xff0c;/lib64/ 是不存在的。但他们是兼容的&…...

python的多线程多进程与多协程

python的多线程是假多线程&#xff0c;本质是交叉串行&#xff0c;并不是严格意义上的并行&#xff0c;或者可以这样说&#xff0c;不管怎么来python的多线程在同一时间有且只有一个线程在执行(举个例子&#xff0c;n个人抢一个座位&#xff0c;但是座位就这一个&#xff0c;不…...

一文介绍使用 JIT 认证后实时同步用户更加优雅

首先本次说的 JIT 指的是 Just In Time &#xff0c;可以理解为及时录入&#xff0c;一般用在什么样的场景呢&#xff1f; 还记的上次我们说过关于第三方组织结构同步的功能实现&#xff0c;主要目的是将第三方源数据同步到内部平台中来&#xff0c;方便做管控和处理 此处的管…...

搞定“项目八怪”,你就是管理高手!

大家好&#xff0c;我是老原。 玛丽.弗列特说&#xff1a;“权力已经逐渐被视为一个群体的组合能力。我们通过有效联系获取力量。” 有效联系也就是指的沟通&#xff0c;这个部分占据我们项目经理工作内容的80%&#xff0c;可见沟通在项目管理中的重要性。 项目经理的沟通包…...

机器视觉-标定篇

3D结构光标定 结构光视觉的优点&#xff1a; 非接触、信息量大、测精度高、抗干扰能力强。 结构光视觉传感器参数的标定包括&#xff1a;摄像机参数标定、结构光平面参数标定。 结构光视觉测量原理图 我们不考虑镜头的畸变&#xff0c;将相机的成像模型简化为小孔成像模型…...

linux离线安装make

一、下载rpm包 https://pkgs.org/search/?qmake 二、拷贝至服务器 三、安装make rpm -ivh make-3.82-24.el7.x86_64.rpm四、查看是否安装成功 make -v...

【深度学习】卷积神经网络(LeNet)【文章重新修改中】

卷积神经网络 LeNet 前言LeNet 模型代码实现MINST代码分块解析1 构建 LeNet 网络结构2 加载数据集3 初始化模型和优化器4 训练模型5 训练完成 完整代码 Fashion-MINST代码分块解析1 构建 LeNet 网络结构2 初始化模型参数3 加载数据集4 定义损失函数和优化器5 训练模型 完整代码…...

win10 Baichuan2-7B-Chat-4bits 上部署 百川2-7B-对话模型-4bits量化版

搞了两天才搞清楚跑通 好难呢,个人电脑 win10 ,6GB显存 个人感觉 生成速度很慢,数学能力不怎么行 没有ChatGLM2-6B 强,逻辑还行, 要求: 我的部署流程 1.下载模型 ,下载所有文件 然后 放到新建的model目录 https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat-4bits/tr…...

2023/9/20总结

maven maven本质是 一个项目管理工具 将项目开发 和 管理过程 抽象成 一个项目对象模型&#xff08;POM&#xff09; POM &#xff08;Project Object Model&#xff09; 项目对象模型 作用 项目构建 提供标准的自动化 项目构建 方式依赖管理 方便快捷的管理项目依赖的资源…...

【Git】git 分支或指定文件回退到指定版本

目录 一、分支回滚 1. 使用 git reset 命令 2.使用 git revert 命令 3.使用 git checkout 命令 二、某个文件回滚 1.查看哪些文件发生修改 2.然后查看提交记录(最近几次提交) 3.执行提交命令 一、分支回滚 1. 使用 git reset 命令 命令可以将当前分支的 HEAD 指针指向指…...

Java 消息策略的实现 - Kafak 是怎么设计的

这个也是开放讨论题&#xff0c;主要讨论下 Kafka 在消息中是如何进行实现的。 1_cCyPNzf95ygMFUgsrleHtw976506 21.4 KB 总结 这个题目的开发性太强了。 Kafka 可以用的地方非常多&#xff0c;我经历过的项目有 Kafka 用在消息处理策略上的。这个主要是 IoT 项目&#xff0c…...

c++opencv RotatedRect 旋转矩形角度转换和顶点顺序转换

这里写自定义目录标题 以下代码记录主要是完成轮廓点求解最小外接矩形之后计算该文本行的角度和旋转矩形的左下&#xff08;bl&#xff09;&#xff0c;左上&#xff08;tl)&#xff0c;右上&#xff08;tr),右下&#xff08;br)的坐标点。 RotatedRect rtminAreaRect(contours…...

Flink-CDC 抽取SQLServer问题总结

Flink-CDC 抽取SQLServer问题总结 背景 flink-cdc 抽取数据到kafka 中&#xff0c;使用flink-sql进行开发&#xff0c;相关问题总结flink-cdc 配置SQLServer cdc参数 1.创建CDC 使用的角色, 并授权给其查询待采集数据数据库 -- a.创建角色 create role flink_role;-- b.授权…...

Linux 系统目录结构 终端

系统目录结构 Linux 或 Unix 操作系统中&#xff0c;所有文件和目录呈一个以根节点为始的倒置的树状结构。文件系统的最顶层是根目录&#xff0c;用 / 来表示根目录。在根目录之下的既可以是目录&#xff0c;也可以是文件&#xff0c;而每一个目录中又可以包含子目录文件。如此…...

Layui + Flask | 实现注册、登录功能(案例篇)(08)

此案例内容比较多,建议滑到最后点击阅读原文,阅读体验更佳。后续也会录制案例视频,将在本周内上传到同名的 b 站账号。 已经看了 layui 表单相关的知识,接下来就可以实现注册功能,功能逻辑如下: 项目创建 新建 flask 项目下载 layui 文件,解压之后复制到指定文件编写前…...

GitLab数据迁移后出现500错误

一、背景 去年做GitLab数据迁移时&#xff0c;写过一篇文章《GitLab的备份与还原》。后来发现新创建的项目没问题&#xff0c;但对于迁移过来的项目&#xff0c;修改名称等信息&#xff0c;或者删除该项目时&#xff0c;会出现500错误&#xff0c;以为是系统问题&#…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告&#xff08;肿瘤大小、血液指标&#xff09;&#xff0c;你需要做出一个**决定性判断**&#xff1a;恶性还是良性&#xff1f;这种“非黑即白”的抉择&#xff0c;正是**逻辑回归&#xff08;Logistic Regression&#xff09;** 的战场&a…...

遍历 Map 类型集合的方法汇总

1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...

spring:实例工厂方法获取bean

spring处理使用静态工厂方法获取bean实例&#xff0c;也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下&#xff1a; 定义实例工厂类&#xff08;Java代码&#xff09;&#xff0c;定义实例工厂&#xff08;xml&#xff09;&#xff0c;定义调用实例工厂&#xff…...

select、poll、epoll 与 Reactor 模式

在高并发网络编程领域&#xff0c;高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表&#xff0c;以及基于它们实现的 Reactor 模式&#xff0c;为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。​ 一、I…...

Element Plus 表单(el-form)中关于正整数输入的校验规则

目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入&#xff08;联动&#xff09;2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...

以光量子为例,详解量子获取方式

光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学&#xff08;silicon photonics&#xff09;的光波导&#xff08;optical waveguide&#xff09;芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中&#xff0c;光既是波又是粒子。光子本…...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)

船舶制造装配管理现状&#xff1a;装配工作依赖人工经验&#xff0c;装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书&#xff0c;但在实际执行中&#xff0c;工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合

在汽车智能化的汹涌浪潮中&#xff0c;车辆不再仅仅是传统的交通工具&#xff0c;而是逐步演变为高度智能的移动终端。这一转变的核心支撑&#xff0c;来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒&#xff08;T-Box&#xff09;方案&#xff1a;NXP S32K146 与…...

【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论

路径问题的革命性重构&#xff1a;基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中&#xff08;图1&#xff09;&#xff1a; mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...

【Linux】自动化构建-Make/Makefile

前言 上文我们讲到了Linux中的编译器gcc/g 【Linux】编译器gcc/g及其库的详细介绍-CSDN博客 本来我们将一个对于编译来说很重要的工具&#xff1a;make/makfile 1.背景 在一个工程中源文件不计其数&#xff0c;其按类型、功能、模块分别放在若干个目录中&#xff0c;mak…...