当前位置: 首页 > news >正文

C# Onnx Yolov8 Detect Poker 扑克牌识别

效果

项目

代码

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using static System.Net.Mime.MediaTypeNames;namespace Onnx_Yolov8_Demo
{public partial class Form1 : Form{public Form1(){InitializeComponent();}string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";string image_path = "";string startupPath;string classer_path;DateTime dt1 = DateTime.Now;DateTime dt2 = DateTime.Now;string model_path;Mat image;DetectionResult result_pro;Result result;Mat result_image;SessionOptions options;InferenceSession onnx_session;Tensor<float> input_tensor;List<NamedOnnxValue> input_ontainer;IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;DisposableNamedOnnxValue[] results_onnxvalue;Tensor<float> result_tensors;StringBuilder sb = new StringBuilder();private void button1_Click(object sender, EventArgs e){OpenFileDialog ofd = new OpenFileDialog();ofd.Filter = fileFilter;if (ofd.ShowDialog() != DialogResult.OK) return;pictureBox1.Image = null;image_path = ofd.FileName;pictureBox1.Image = new Bitmap(image_path);textBox1.Text = "";image = new Mat(image_path);pictureBox2.Image = null;}private void button2_Click(object sender, EventArgs e){if (image_path == ""){return;}// 配置图片数据image = new Mat(image_path);int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);Rect roi = new Rect(0, 0, image.Cols, image.Rows);image.CopyTo(new Mat(max_image, roi));float[] result_array = new float[8400 * 56];float[] factors = new float[2];factors[0] = factors[1] = (float)(max_image_length / 640.0);// 将图片转为RGB通道Mat image_rgb = new Mat();Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);Mat resize_image = new Mat();Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(640, 640));// 输入Tensor// input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });for (int y = 0; y < resize_image.Height; y++){for (int x = 0; x < resize_image.Width; x++){input_tensor[0, 0, y, x] = resize_image.At<Vec3b>(y, x)[0] / 255f;input_tensor[0, 1, y, x] = resize_image.At<Vec3b>(y, x)[1] / 255f;input_tensor[0, 2, y, x] = resize_image.At<Vec3b>(y, x)[2] / 255f;}}//将 input_tensor 放入一个输入参数的容器,并指定名称input_ontainer.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor));dt1 = DateTime.Now;//运行 Inference 并获取结果result_infer = onnx_session.Run(input_ontainer);dt2 = DateTime.Now;// 将输出结果转为DisposableNamedOnnxValue数组results_onnxvalue = result_infer.ToArray();// 读取第一个节点输出并转为Tensor数据result_tensors = results_onnxvalue[0].AsTensor<float>();result_array = result_tensors.ToArray();resize_image.Dispose();image_rgb.Dispose();result_pro = new DetectionResult(classer_path, factors);result = result_pro.process_result(result_array);result_image = result_pro.draw_result(result, image.Clone());if (!result_image.Empty()){pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());sb.Clear();sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");sb.AppendLine("------------------------------");for (int i = 0; i < result.length; i++){sb.AppendLine(string.Format("{0}:{1},({2},{3},{4},{5})", result.classes[i], result.scores[i].ToString("0.00"), result.rects[i].TopLeft.X, result.rects[i].TopLeft.Y, result.rects[i].BottomRight.X, result.rects[i].BottomRight.Y));}textBox1.Text = sb.ToString();}else{textBox1.Text = "无信息";}}private void Form1_Load(object sender, EventArgs e){startupPath = System.Windows.Forms.Application.StartupPath;model_path = startupPath + "\\poker2.onnx";classer_path = startupPath + "\\poker2.txt";// 创建输出会话,用于输出模型读取信息options = new SessionOptions();options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;// 设置为CPU上运行options.AppendExecutionProvider_CPU(0);// 创建推理模型类,读取本地模型文件onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径// 输入Tensorinput_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });// 创建输入容器input_ontainer = new List<NamedOnnxValue>();}}
}

Demo下载

相关文章:

C# Onnx Yolov8 Detect Poker 扑克牌识别

效果 项目 代码 using Microsoft.ML.OnnxRuntime; using Microsoft.ML.OnnxRuntime.Tensors; using OpenCvSharp; using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq; using System…...

想要精通算法和SQL的成长之路 - 最长等差数列

想要精通算法和SQL的成长之路 - 最长等差数列 前言一. 最长等差数列 前言 想要精通算法和SQL的成长之路 - 系列导航 一. 最长等差数列 原题链接 思路&#xff1a; 我们假设dp[i][j] 为&#xff1a;以num[i]为结尾&#xff0c;以j为公差的最长等差子序列的长度。由此可知&a…...

【简单的自动曝光】python实现-附ChatGPT解析

1.题目 一个图像有 n 个像素点,存储在一个长度为 n 的数组 img 里, 每个像素点的取值范围[0,255] 的正整数。 请你给图像每个像素点值,加上一个整数 k (可以是负数),得到新图 newImg , 使得新图newImg 的所有像素平均值最接近中位值 128。 请输出这个整数 k。 输入描述 n …...

网工内推 | 运维工程师,CCNP认证优先,周末双休,多次调薪机会

01 驻场运维 职责描述&#xff1a; 1、驻场某大型汽车整车厂&#xff0c;配合客户完成网络相关&#xff08;路由交换&#xff09;的项目。 2、按照客户要求&#xff0c;与项目组配合共同完成项目前期调研&#xff0c;设计&#xff0c;规划&#xff0c;项目中期调试测试&#…...

LeetCode 1337. The K Weakest Rows in a Matrix【数组,二分,堆,快速选择,排序】1224

本文属于「征服LeetCode」系列文章之一&#xff0c;这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁&#xff0c;本系列将至少持续到刷完所有无锁题之日为止&#xff1b;由于LeetCode还在不断地创建新题&#xff0c;本系列的终止日期可能是永远。在这一系列刷题文章…...

如何使用Spring提供的Retry

0、本例中使用的是 springboot-2.0.4.RELEASE&#xff0c;jdk1.8 1、导包。需要注意版本。2.0.0需要spring6和jdk17 <dependency><groupId>org.springframework.retry</groupId><artifactId>spring-retry</artifactId><version>1.3.4<…...

【ONE·Linux || 进程间通信】

总言 进程间通信&#xff1a;简述进程间通信&#xff0c;介绍一些通信方式&#xff0c;管道通信&#xff08;匿名、名命&#xff09;、共享内存等。 文章目录 总言1、进程间通信简述2、管道2.1、简介2.2、匿名管道2.2.1、匿名管道的原理2.2.2、编码理解&#xff1a;用fork来共…...

207.Flink(二):架构及核心概念,flink从各种数据源读取数据,各种算子转化数据,将数据推送到各数据源

一、Flink架构及核心概念 1.系统架构 JobMaster是JobManager中最核心的组件,负责处理单独的作业(Job)。一个job对应一个jobManager 2.并行度 (1)并行度(Parallelism)概念 一个特定算子的子任务(subtask)的个数被称之为其并行度(parallelism)。这样,包含并行子任…...

debian终端快捷键设置

为了方便使用图形化debian&#xff0c;快捷调出shell终端是提升工作学习效率的最重要的一步。 1.首先点击右上角&#xff0c;选择设置 2.点击键盘&#xff0c;选择快捷键&#xff0c;并创建自定义快捷键 3.点击添加快捷键 4.根据图中提示创建快捷键 Name: Terminal Command…...

原生ajax

什么是Ajax Asynchronous JavaScript and xml 异步的 js 和 xml(数据承载方式) &#xff0c;本质&#xff1a;使用js提供的异步对象XMLHttpRequest 异步的向服务器提交请求&#xff0c;并且接受服务器响应回来的数据。 使用ajax 1.创建异步对象 var xhrnew XMLHttp…...

面试题库(五):并发编程

多线程类的使用 java线程同步有哪些方法、各自的优缺点synchronized 和ReentrantLock区别,可重入锁是什么?threadlocal有什么用Java中创建线程有几种方式?分别是? 当主线程执行结束后,子线程还会继续执行下去吗?JUC中有哪些常用的集合?(项目中用到的)CopyOnWriteArray…...

Android FileProvider笔记

一、FileProvider是什么 通过FileProvider.getUriForFile(NonNull Context context, NonNull String authority, NonNull File file)方法获得一个有临时权限的Uri给客户端用来访问本APP文件。 当然看FileProvider类的注释更加详细 二、代码示例 <providerandroid:name&q…...

华为云云耀云服务器L实例评测 |云服务器选购

华为云耀云服务器 L 实例是一款轻量级云服务器&#xff0c;开通选择实例即可立刻使用&#xff0c;不需要用户再对服务器进行基础配置。新用户还有专享优惠&#xff0c;2 核心 2G 内存 3M 带宽的服务器只要 89 元/年&#xff0c;可以点击华为云云耀云服务器 L 实例购买地址去购买…...

2023-09-22 LeetCode每日一题(将钱分给最多的儿童)

2023-09-22每日一题 一、题目编号 2591. 将钱分给最多的儿童二、题目链接 点击跳转到题目位置 三、题目描述 给你一个整数 money &#xff0c;表示你总共有的钱数&#xff08;单位为美元&#xff09;和另一个整数 children &#xff0c;表示你要将钱分配给多少个儿童。 你…...

功能测试的重要性

前言 在软件开发领域&#xff0c;功能测试是确保软件质量的关键步骤之一。正如其名称所示&#xff0c;功能测试是验证软件产品是否具有其描述的功能和符合预期结果的过程。这种类型的测试非常重要&#xff0c;因为它不仅可以帮助团队检测潜在的缺陷并提高软件品质&#xff0c;…...

《Linux高性能服务器编程》--高级I/O函数

目录 1--Pipe() 2--dup() 和 dup2() 3--readv() 和 writev() 4--sendfile() 5--mmap() 和 munmap() 6--spice() 7--tea() 8--fcntl() 1--Pipe() #include <unistd.h> int pipe(int fd[2]); // 成功返回0&#xff0c;失败返回-1 pipe() 函数可用于创建一个管道&a…...

算法通关村 | 透彻理解动态规划

1. 斐波那契数列 1&#xff0c;1&#xff0c;2&#xff0c;3&#xff0c;5&#xff0c;8&#xff0c;13&#xff0c;..... f(n) f(n-1) f(n-2) 代码实现 public static int count_2 0;public int fibonacci(int n){if (n < 2){count_2;return n;}int f1 1;int f2 2;i…...

数据结构(持续更新)

嗯,怎么说数据结构果然很玄妙。按照能不能存储多行元素大致分为两类。 不能存好几行的数据包括pair,int,float,double,char,struct; 能存好几行的:map,unordered_map,list,vector,set,string,array。 1. pair “pair” 是 C++ 标准库中的一个模板类,它用于存储…...

nginx部署vue后显示500 Internal Server Error解决方案

前言 描述&#xff1a;当我配置好全部之后&#xff0c;通过 服务器 ip 地址访问&#xff0c;遇到报错信息&#xff1a;500 Internal Server Error。 今天部署vue前端项目一直报错500&#xff0c;无法显示出主页面。 一个以为是自己的dist位置没有访问正确或者nginx.conf的位…...

微调大型语言模型(一):为什么要微调(Why finetune)?

今天我们来学习Deeplearning.ai的在线课程 微调大型语言模型(一)的第一课&#xff1a;为什么要微调(Why finetune)。 我们知道像GPT-3.5这样的大型语言模型(LLM)它所学到的知识截止到2021年9月&#xff0c;那么如果我们向ChatGPT询问2022年以后发生的事情&#xff0c;它可能会…...

大话软工笔记—需求分析概述

需求分析&#xff0c;就是要对需求调研收集到的资料信息逐个地进行拆分、研究&#xff0c;从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要&#xff0c;后续设计的依据主要来自于需求分析的成果&#xff0c;包括: 项目的目的…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad&#xff08;Adaptive Gradient Algorithm&#xff09;是一种自适应学习率的优化算法&#xff0c;由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率&#xff0c;适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

三维GIS开发cesium智慧地铁教程(5)Cesium相机控制

一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点&#xff1a; 路径验证&#xff1a;确保相对路径.…...

TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案

一、TRS收益互换的本质与业务逻辑 &#xff08;一&#xff09;概念解析 TRS&#xff08;Total Return Swap&#xff09;收益互换是一种金融衍生工具&#xff0c;指交易双方约定在未来一定期限内&#xff0c;基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...

Spring数据访问模块设计

前面我们已经完成了IoC和web模块的设计&#xff0c;聪明的码友立马就知道了&#xff0c;该到数据访问模块了&#xff0c;要不就这俩玩个6啊&#xff0c;查库势在必行&#xff0c;至此&#xff0c;它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据&#xff08;数据库、No…...

《C++ 模板》

目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板&#xff0c;就像一个模具&#xff0c;里面可以将不同类型的材料做成一个形状&#xff0c;其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式&#xff1a;templa…...

Java + Spring Boot + Mybatis 实现批量插入

在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法&#xff1a;使用 MyBatis 的 <foreach> 标签和批处理模式&#xff08;ExecutorType.BATCH&#xff09;。 方法一&#xff1a;使用 XML 的 <foreach> 标签&#xff…...

Webpack性能优化:构建速度与体积优化策略

一、构建速度优化 1、​​升级Webpack和Node.js​​ ​​优化效果​​&#xff1a;Webpack 4比Webpack 3构建时间降低60%-98%。​​原因​​&#xff1a; V8引擎优化&#xff08;for of替代forEach、Map/Set替代Object&#xff09;。默认使用更快的md4哈希算法。AST直接从Loa…...

逻辑回归暴力训练预测金融欺诈

简述 「使用逻辑回归暴力预测金融欺诈&#xff0c;并不断增加特征维度持续测试」的做法&#xff0c;体现了一种逐步建模与迭代验证的实验思路&#xff0c;在金融欺诈检测中非常有价值&#xff0c;本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...