当前位置: 首页 > news >正文

多输入多输出 | MATLAB实现GA-BP遗传算法优化BP神经网络多输入多输出

多输入多输出 | MATLAB实现GA-BP遗传算法优化BP神经网络多输入多输出

目录

    • 多输入多输出 | MATLAB实现GA-BP遗传算法优化BP神经网络多输入多输出
      • 预测效果
      • 基本介绍
      • 程序设计
      • 往期精彩
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

多输入多输出 | MATLAB实现GA-BP遗传算法优化BP神经网络多输入多输出
1.data为数据集,10个输入特征,3个输出变量。
2.main.m为主程序文件。
3.命令窗口输出MBE、MAE和R2,可在下载区获取数据和程序内容。

程序设计

  • 完整程序和数据下载方式:私信博主回复MATLAB实现GA-BP遗传算法优化BP神经网络多输入多输出
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
function [x, endPop, bPop, traceInfo] = ga(bounds, evalFN, evalOps, startPop, opts, ...
termFN, termOps, selectFN, selectOps, xOverFNs, xOverOps, mutFNs, mutOps)% Output Arguments:
%   x            - the best solution found during the course of the run
%   endPop       - the final population 
%   bPop         - a trace of the best population
%   traceInfo    - a matrix of best and means of the ga for each generation
%
% Input Arguments:
%   bounds       - a matrix of upper and lower bounds on the variables
%   evalFN       - the name of the evaluation .m function
%   evalOps      - options to pass to the evaluation function ([NULL])
%   startPop     - a matrix of solutions that can be initialized
%                  from initialize.m
%   opts         - [epsilon prob_ops display] change required to consider two 
%                  solutions different, prob_ops 0 if you want to apply the
%                  genetic operators probabilisticly to each solution, 1 if
%                  you are supplying a deterministic number of operator
%                  applications and display is 1 to output progress 0 for
%                  quiet. ([1e-6 1 0])
%   termFN       - name of the .m termination function (['maxGenTerm'])
%   termOps      - options string to be passed to the termination function
%                  ([100]).
%   selectFN     - name of the .m selection function (['normGeomSelect'])
%   selectOpts   - options string to be passed to select after
%                  select(pop,#,opts) ([0.08])
%   xOverFNS     - a string containing blank seperated names of Xover.m
%                  files (['arithXover heuristicXover simpleXover']) 
%   xOverOps     - A matrix of options to pass to Xover.m files with the
%                  first column being the number of that xOver to perform
%                  similiarly for mutation ([2 0;2 3;2 0])
%   mutFNs       - a string containing blank seperated names of mutation.m 
%                  files (['boundaryMutation multiNonUnifMutation ...
%                           nonUnifMutation unifMutation'])
%   mutOps       - A matrix of options to pass to Xover.m files with the
%                  first column being the number of that xOver to perform
%                  similiarly for mutation ([4 0 0;6 100 3;4 100 3;4 0 0])%%  初始化参数
n = nargin;
if n < 2 || n == 6 || n == 10 || n == 12disp('Insufficient arguements') 
end% 默认评估选项
if n < 3 evalOps = [];
end% 默认参数
if n < 5opts = [1e-6, 1, 0];
end% 默认参数
if isempty(opts)opts = [1e-6, 1, 0];
end%%  判断是否为m文件
if any(evalFN < 48)% 浮点数编码 if opts(2) == 1e1str = ['x=c1; c1(xZomeLength)=', evalFN ';'];  e2str = ['x=c2; c2(xZomeLength)=', evalFN ';']; % 二进制编码elsee1str = ['x=b2f(endPop(j,:),bounds,bits); endPop(j,xZomeLength)=', evalFN ';'];end
else% 浮点数编码if opts(2) == 1e1str = ['[c1 c1(xZomeLength)]=' evalFN '(c1,[gen evalOps]);'];  e2str = ['[c2 c2(xZomeLength)]=' evalFN '(c2,[gen evalOps]);'];% 二进制编码elsee1str=['x=b2f(endPop(j,:),bounds,bits);[x v]=' evalFN ...'(x,[gen evalOps]); endPop(j,:)=[f2b(x,bounds,bits) v];'];  end
end%%  默认终止信息
if n < 6termOps = 100;termFN = 'maxGenTerm';
end%%  默认变异信息
if n < 12% 浮点数编码if opts(2) == 1mutFNs = 'boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation';mutOps = [4, 0, 0; 6, termOps(1), 3; 4, termOps(1), 3;4, 0, 0];% 二进制编码elsemutFNs = 'binaryMutation';mutOps = 0.05;end
end%%  默认交叉信息
if n < 10% 浮点数编码if opts(2) == 1xOverFNs = 'arithXover heuristicXover simpleXover';xOverOps = [2, 0; 2, 3; 2, 0];% 二进制编码elsexOverFNs = 'simpleXover';xOverOps = 0.6;end
end%%  仅默认选择选项,即轮盘赌。
if n < 9selectOps = [];
end%%  默认选择信息
if n < 8selectFN = 'normGeomSelect';selectOps = 0.08;
end%%  默认终止信息
if n < 6termOps = 100;termFN = 'maxGenTerm';
end%%  没有定的初始种群
if n < 4startPop = [];
end%%  随机生成种群
if isempty(startPop)startPop = initializega(80, bounds, evalFN, evalOps, opts(1: 2));
end%%  二进制编码
if opts(2) == 0bits = calcbits(bounds, opts(1));
end%%  参数设置
xOverFNs     = parse(xOverFNs);
mutFNs       = parse(mutFNs);
xZomeLength  = size(startPop, 2); 	          % xzome 的长度
numVar       = xZomeLength - 1; 	          % 变量数
popSize      = size(startPop,1); 	          % 种群人口个数
endPop       = zeros(popSize, xZomeLength);   % 第二种群矩阵
numXOvers    = size(xOverFNs, 1);             % Number of Crossover operators
numMuts      = size(mutFNs, 1); 		      % Number of Mutation operators
epsilon      = opts(1);                       % Threshold for two fittness to differ
oval         = max(startPop(:, xZomeLength)); % Best value in start pop
bFoundIn     = 1; 			                  % Number of times best has changed
done         = 0;                             % Done with simulated evolution
gen          = 1; 			                  % Current Generation Number
collectTrace = (nargout > 3); 		          % Should we collect info every gen
floatGA      = opts(2) == 1;                  % Probabilistic application of ops
display      = opts(3);                       % Display progress %%  精英模型
while(~done)[bval, bindx] = max(startPop(:, xZomeLength));            % Best of current popbest =  startPop(bindx, :);if collectTracetraceInfo(gen, 1) = gen; 		                        % current generationtraceInfo(gen, 2) = startPop(bindx,  xZomeLength);      % Best fittnesstraceInfo(gen, 3) = mean(startPop(:, xZomeLength));     % Avg fittnesstraceInfo(gen, 4) = std(startPop(:,  xZomeLength)); end%%  最佳解if ( (abs(bval - oval) > epsilon) || (gen==1))% 更新显示if displayfprintf(1, '\n%d %f\n', gen, bval);          end% 更新种群矩阵if floatGAbPop(bFoundIn, :) = [gen, startPop(bindx, :)]; elsebPop(bFoundIn, :) = [gen, b2f(startPop(bindx, 1 : numVar), bounds, bits)...startPop(bindx, xZomeLength)];endbFoundIn = bFoundIn + 1;                      % Update number of changesoval = bval;                                  % Update the best valelseif displayfprintf(1,'%d ',gen);	                      % Otherwise just update num genendend
%%  选择种群endPop = feval(selectFN, startPop, [gen, selectOps]);% 以参数为操作数的模型运行if floatGAfor i = 1 : numXOversfor j = 1 : xOverOps(i, 1)a = round(rand * (popSize - 1) + 1); 	     % Pick a parentb = round(rand * (popSize - 1) + 1); 	     % Pick another parentxN = deblank(xOverFNs(i, :)); 	         % Get the name of crossover function[c1, c2] = feval(xN, endPop(a, :), endPop(b, :), bounds, [gen, xOverOps(i, :)]);% Make sure we created a new if c1(1 : numVar) == endPop(a, (1 : numVar)) c1(xZomeLength) = endPop(a, xZomeLength);elseif c1(1:numVar) == endPop(b, (1 : numVar))c1(xZomeLength) = endPop(b, xZomeLength);elseeval(e1str);endif c2(1 : numVar) == endPop(a, (1 : numVar))c2(xZomeLength) = endPop(a, xZomeLength);elseif c2(1 : numVar) == endPop(b, (1 : numVar))c2(xZomeLength) = endPop(b, xZomeLength);elseeval(e2str);endendPop(a, :) = c1;endPop(b, :) = c2;endendfor i = 1 : numMutsfor j = 1 : mutOps(i, 1)a = round(rand * (popSize - 1) + 1);c1 = feval(deblank(mutFNs(i, :)), endPop(a, :), bounds, [gen, mutOps(i, :)]);if c1(1 : numVar) == endPop(a, (1 : numVar)) c1(xZomeLength) = endPop(a, xZomeLength);elseeval(e1str);endendPop(a, :) = c1;endend%%  运行遗传算子的概率模型else for i = 1 : numXOversxN = deblank(xOverFNs(i, :));cp = find((rand(popSize, 1) < xOverOps(i, 1)) == 1);if rem(size(cp, 1), 2) cp = cp(1 : (size(cp, 1) - 1)); endcp = reshape(cp, size(cp, 1) / 2, 2);for j = 1 : size(cp, 1)a = cp(j, 1); b = cp(j, 2); [endPop(a, :), endPop(b, :)] = feval(xN, endPop(a, :), endPop(b, :), ...bounds, [gen, xOverOps(i, :)]);endendfor i = 1 : numMutsmN = deblank(mutFNs(i, :));for j = 1 : popSizeendPop(j, :) = feval(mN, endPop(j, :), bounds, [gen, mutOps(i, :)]);eval(e1str);endendend%  更新记录gen = gen + 1;done = feval(termFN, [gen, termOps], bPop, endPop); % See if the ga is donestartPop = endPop; 			                      % Swap the populations[~, bindx] = min(startPop(:, xZomeLength));         % Keep the best solutionstartPop(bindx, :) = best; 		                  % replace it with the worstend
[bval, bindx] = max(startPop(:, xZomeLength));%%  显示结果
if display fprintf(1, '\n%d %f\n', gen, bval);	  
end%%  二进制编码
x = startPop(bindx, :);
if opts(2) == 0x = b2f(x, bounds,bits);bPop(bFoundIn, :) = [gen, b2f(startPop(bindx, 1 : numVar), bounds, bits)...startPop(bindx, xZomeLength)];
elsebPop(bFoundIn, :) = [gen, startPop(bindx, :)];
end%%  赋值
if collectTracetraceInfo(gen, 1) = gen; 		                      % 当前迭代次数traceInfo(gen, 2) = startPop(bindx, xZomeLength);   % 最佳适应度traceInfo(gen, 3) = mean(startPop(:, xZomeLength)); % 平均适应度
end

往期精彩

MATLAB实现RBF径向基神经网络多输入多输出预测
MATLAB实现BP神经网络多输入多输出预测
MATLAB实现DNN神经网络多输入多输出预测

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/116377961
[2] https://blog.csdn.net/kjm13182345320/article/details/127931217
[3] https://blog.csdn.net/kjm13182345320/article/details/127894261

相关文章:

多输入多输出 | MATLAB实现GA-BP遗传算法优化BP神经网络多输入多输出

多输入多输出 | MATLAB实现GA-BP遗传算法优化BP神经网络多输入多输出 目录 多输入多输出 | MATLAB实现GA-BP遗传算法优化BP神经网络多输入多输出预测效果基本介绍程序设计往期精彩参考资料 预测效果 基本介绍 多输入多输出 | MATLAB实现GA-BP遗传算法优化BP神经网络多输入多输出…...

李宏毅机器学习笔记-transformer

transformer是什么呢&#xff1f;是一个seq2seq的model。具体应用如上图所示&#xff0c;输入和输出的序列长度不固定&#xff0c;由model自己决定。 语音翻译指的是&#xff0c;直接输入一段语音信号&#xff0c;例如英文&#xff0c;输出的直接是翻译之后的中文。 seq2seq如…...

基于Java的酒店管理系统

博主主页&#xff1a;猫头鹰源码 博主简介&#xff1a;Java领域优质创作者、CSDN博客专家、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战 主要内容&#xff1a;毕业设计(Javaweb项目|小程序等)、简历模板、学习资料、面试题库、技术咨询 文末联系获取 项目介绍…...

Go语言的单元测试与基准测试详解

文章目录 单元测试基准测试 单元测试 以一个加法函数为例&#xff0c;对其进行单元测试。 首先编写add.go文件&#xff1a; //add.go package mainfunc add(a, b int) int {return a b }其次编写add_test.go文件&#xff0c;在go语言中&#xff0c;测试文件均已_test结尾&a…...

【多态】为什么析构函数的名称统一处理为destructor?

析构函数的名称统一处理为destructor的目的是为了解决析构函数的重写。 而这又引出了一个问题&#xff1a;为什么要进行析构函数的重写&#xff1f; 是为了下面这种情况&#xff1a; class Person { public:~Person() { cout << "~Person" << endl; } }…...

6.4 Case Studies - A Simple Logging Archive Class

下面这段内容介绍了一个示例&#xff0c;目的是帮助澄清"归档概念&#xff08;Archive Concept&#xff09;"的用法&#xff0c;以便用户可以实现自己的归档类。simple_log_archive.hpp 实现了一个简单但实用的归档类&#xff0c;用于将任何可序列化类型以可读的格式…...

【深度学习实验】前馈神经网络(九):整合训练、评估、预测过程(Runner)

目录 一、实验介绍 二、实验环境 1. 配置虚拟环境 2. 库版本介绍 三、实验内容 0. 导入必要的工具包 1. __init__(初始化) 2. train(训练) 3. evaluate(评估) 4. predict(预测) 5. save_model 6. load_model 7. 代码整合 一、实验介绍 二、实验环境 本系列实验使用…...

002-第一代硬件系统架构确立及产品选型

第一代硬件系统架构确立及产品选型 文章目录 第一代硬件系统架构确立及产品选型项目介绍摘要硬件架构硬件结构选型及设计单片机选型上位机选型扯点别的 关键字&#xff1a; Qt、 Qml、 信号采集机、 数据处理、 上位机 项目介绍 欢迎来到我们的 QML & C 项目&#xff…...

Go基础语法:指针和make和new

8 指针、make、new 8.1 指针&#xff08;pointer&#xff09; Go 语言中没有指针操作&#xff0c;只需要记住两个符号即可&#xff1a; & 取内存地址* 根据地址取值 package mainimport "fmt"func main() {a : 18// 获取 a 的地址值并复制给 pp : &a// …...

039_小驰私房菜_Camera perfermance debug

全网最具价值的Android Camera开发学习系列资料~ 作者:8年Android Camera开发,从Camera app一直做到Hal和驱动~ 欢迎订阅,相信能扩展你的知识面,提升个人能力~ 一、抓取trace 1. adb shell "echo vendor.debug.trace.perf=1 >> /system/build.prop" 2. …...

Caché for Windows安装及配置

本文介绍在Windows上安装Cach的操作步骤。本文假设用户熟悉Windows目录结构、实用程序和命令。本文包含如下主要部分:​​​​​​ 1)Cach安装...

代码随想录算法训练营20期|第四十六天|动态规划part08|● 139.单词拆分 ● 关于多重背包,你该了解这些! ● 背包问题总结篇!

139.单词拆分 感觉这个板块要重新刷&#xff0c;完全没有印象 class Solution {public boolean wordBreak(String s, List<String> wordDict) {Set<String> set new HashSet<>(wordDict);boolean[] dp new boolean[s.length() 1];dp[0] true;for (int i…...

系统安装(一)CentOS 7 本地安装

CentOS与Ubuntu并称为Linux最著名的两个发行版&#xff0c;但由于笔者主要从事深度学习图像算法工作&#xff0c;Ubuntu作为谷歌和多数依赖库的亲儿子占据着最高生态位。但最近接手的一个项目里&#xff0c;甲方指定需要在CentOS7上运行项目代码&#xff0c;笔者被迫小小cos了一…...

obsidian使用指南

插入代码块快捷键设置 插入代码块 用英文搜索快捷键名字 英文搜索的【Insert code block】对应的是 (6个点) 中文搜索的【代码块】对应的是 &#xff08;2个点&#xff09; 查看word、excel等非md文件设置 电脑端obsidian->设置->文件与链接->检测所有类型文件->…...

【ardunio】青少年机器人四级实操代码(2023年9月)

目录 一、题目 二、示意图 三、流程图 四、硬件连接 1、舵机 2、超声波 3、LED灯 五、程序 一、题目 实操考题(共1题&#xff0c;共100分) 1. 主题&#xff1a; 迎宾机器人 器件&#xff1a;Atmega328P主控板1块&#xff0c;舵机1个&#xff0c;超声波传感器1个&…...

MYSQL的存储过程

存储过程 存储过程是事先经过编译并存储在数据库中的一段 SQL 语句的集合&#xff0c;调用存储过程可以简化应用开发人员的很多工作&#xff0c;减少数据在数据库和应用服务器之间的传输&#xff0c;对于提高数据处理的效率是有好处的。存储过程思想上很简单&#xff0c;就是…...

[kubernetes/docker] failed to resolve reference ...:latest: not found

问题描述: pod一直pending, kubectl describe pod ... 显示: Warning Failed 9s (x3 over 63s) kubelet Failed to pull image "mathemagics/my-kube-scheduler": rpc error: code NotFound desc failed to pull and unpack image "docker…...

彻底解决win11系统0x80070032

经过各种尝试&#xff0c;终于找到原因。第一个是电脑加密软件&#xff0c;第二个是需要的部分功能没有开启&#xff0c;第三个BIOS设置。个人觉得第三个不重要。 解决方法 笔记本型号 笔记本型号是Thinkpad T14 gen2。进入BIOS的按键是按住Enter键。 1、关闭山丽防水墙服务…...

解决因为修改SELINUX配置文件出错导致Faild to load SELinux poilcy无法进入CentOS7系统的问题

一、问题 最近学习Kubernetes&#xff0c;需要设置永久关闭SELINUX,结果修改错了一个SELINUX配置参数&#xff0c;关机重新启动后导致无法进入CentOS7系统&#xff0c;卡在启动进度条界面。 二、解决 多次重启后&#xff0c;在启动日志中发现 Faild to load SELinux poilcy…...

flask中的跨域处理-方法二不使用第三方库

方法1(第三方库) pip install flask-cors from flask import Flask from flask_cors import CORSapp = Flask(__name__) CORS(app, resources={r"/api/*": {"origins": ["http://localhost:63342", "http://localhost:63345"]}})方…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

12.找到字符串中所有字母异位词

&#x1f9e0; 题目解析 题目描述&#xff1a; 给定两个字符串 s 和 p&#xff0c;找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义&#xff1a; 若两个字符串包含的字符种类和出现次数完全相同&#xff0c;顺序无所谓&#xff0c;则互为…...

HTML前端开发:JavaScript 常用事件详解

作为前端开发的核心&#xff0c;JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例&#xff1a; 1. onclick - 点击事件 当元素被单击时触发&#xff08;左键点击&#xff09; button.onclick function() {alert("按钮被点击了&#xff01;&…...

AI语音助手的Python实现

引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...

Kubernetes 网络模型深度解析:Pod IP 与 Service 的负载均衡机制,Service到底是什么?

Pod IP 的本质与特性 Pod IP 的定位 纯端点地址&#xff1a;Pod IP 是分配给 Pod 网络命名空间的真实 IP 地址&#xff08;如 10.244.1.2&#xff09;无特殊名称&#xff1a;在 Kubernetes 中&#xff0c;它通常被称为 “Pod IP” 或 “容器 IP”生命周期&#xff1a;与 Pod …...

springboot 日志类切面,接口成功记录日志,失败不记录

springboot 日志类切面&#xff0c;接口成功记录日志&#xff0c;失败不记录 自定义一个注解方法 import java.lang.annotation.ElementType; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import java.lang.annotation.Target;/***…...

加密通信 + 行为分析:运营商行业安全防御体系重构

在数字经济蓬勃发展的时代&#xff0c;运营商作为信息通信网络的核心枢纽&#xff0c;承载着海量用户数据与关键业务传输&#xff0c;其安全防御体系的可靠性直接关乎国家安全、社会稳定与企业发展。随着网络攻击手段的不断升级&#xff0c;传统安全防护体系逐渐暴露出局限性&a…...

Qt的学习(一)

1.什么是Qt Qt特指用来进行桌面应用开发&#xff08;电脑上写的程序&#xff09;涉及到的一套技术Qt无法开发网页前端&#xff0c;也不能开发移动应用。 客户端开发的重要任务&#xff1a;编写和用户交互的界面。一般来说和用户交互的界面&#xff0c;有两种典型风格&…...

OpenGL-什么是软OpenGL/软渲染/软光栅?

‌软OpenGL&#xff08;Software OpenGL&#xff09;‌或者软渲染指完全通过CPU模拟实现的OpenGL渲染方式&#xff08;包括几何处理、光栅化、着色等&#xff09;&#xff0c;不依赖GPU硬件加速。这种模式通常性能较低&#xff0c;但兼容性极强&#xff0c;常用于不支持硬件加速…...

Docker环境下安装 Elasticsearch + IK 分词器 + Pinyin插件 + Kibana(适配7.10.1)

做RAG自己打算使用esmilvus自己开发一个&#xff0c;安装时好像网上没有比较新的安装方法&#xff0c;然后找了个旧的方法对应试试&#xff1a; &#x1f680; 本文将手把手教你在 Docker 环境中部署 Elasticsearch 7.10.1 IK分词器 拼音插件 Kibana&#xff0c;适配中文搜索…...