当前位置: 首页 > news >正文

概率论几种易混淆的形式

  1. 正态分布标准型

x − μ σ \frac{x - \mu}{\sigma} σxμ

  1. 大数定律形式

P { X ≤ ∑ i = 1 n x i − n μ n σ 2 } = ∫ − ∞ X 1 2 π e − x 2 2 d x P\{X \le \frac{\sum_{i= 1}^{n}x_i -n\mu}{\sqrt{n\sigma^2}} \} = \int _{-\infty}^{X}\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}dx P{Xnσ2 i=1nxinμ}=X2π 1e2x2dx

即:

P { X ≤ x ˉ − μ σ n } = ∫ − ∞ X 1 2 π e − x 2 2 d x P\{X \le \frac{\bar x -\mu}{\frac{\sigma}{\sqrt{n}}} \} = \int _{-\infty}^{X}\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}dx P{Xn σxˉμ}=X2π 1e2x2dx

  1. 关于 χ 2 \chi^2 χ2的定理

( n − 1 ) S 2 σ 2 ∼ χ 2 ( n − 1 ) \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1) σ2(n1)S2χ2(n1)

  1. x ˉ − μ S / n ∼ t 2 ( n − 1 ) \frac{\bar x - \mu}{S/\sqrt{n}} \sim t^2(n-1) S/n xˉμt2(n1)

相关文章:

概率论几种易混淆的形式

正态分布标准型 x − μ σ \frac{x - \mu}{\sigma} σx−μ​ 大数定律形式 P { X ≤ ∑ i 1 n x i − n μ n σ 2 } ∫ − ∞ X 1 2 π e − x 2 2 d x P\{X \le \frac{\sum_{i 1}^{n}x_i -n\mu}{\sqrt{n\sigma^2}} \} \int _{-\infty}^{X}\frac{1}{\sqrt{2\pi}}e^{-\fr…...

PyTorch数据增强后的结果展示

from PIL import Image import torch from torchvision import transformstrans transforms.Compose([transforms.ToTensor(), transforms.RandomErasing(p0.9, value 120, inplaceTrue)]) # 这里Compose是所做的变换img_path 02-56-45-060-1454-camra1.bmp img Image.open…...

指定程序在哪个GPU上运行

摘要: 当本地(或服务器)有个多个GPU时,需要指定程序在指定GPU上运行,需要做以下设置。 目录 一、在终端上指定GPU二、在程序中指定GPU三、系统变量指定GPU四、pytorch中指定GPU 一、在终端上指定GPU 在终端运行程序时…...

Linux CentOS7 vim多文件编辑

使用vim编辑多个文件,十分常用的操作。本文从打开、显示、切换文件到退出,进行简单讨论。 一、打开文件 1.一次打开多个文件 vim还没有启动的时候,在终端里输入vim file1 file2 … filen便可以打开所有想要打开的文件。 执行命令 vim fil…...

PAT甲级真题1153: 解码PAT准考证

🕺作者: 主页 我的专栏C语言从0到1探秘C数据结构从0到1探秘Linux菜鸟刷题集 😘欢迎关注:👍点赞🙌收藏✍️留言 🏇码字不易,你的👍点赞🙌收藏❤️关注对我真的…...

linux信号

title: linux信号 createTime: 2020-10-29 18:05:52 updateTime: 2020-10-29 18:05:52 categories: linux tags: SIGHUP 终止进程 终端线路挂断[喝小酒的网摘]http://blog.hehehehehe.cn/a/16999.htm SIGINT 终止进程 中断进程 SIGQUIT 建立CORE文件终止进程,并且生…...

JavaWeb开发-05-SpringBootWeb请求响应

一.请求 1.Postman 2.简单参数 ​ package com.wjh.controller;import org.springframework.web.bind.annotation.RequestMapping; import org.springframework.web.bind.annotation.RestController;import javax.servlet.http.HttpServletRequest;/** 测试请求参数接受*/ R…...

Ubuntu下载

参考文档: 镜像文件:VMware下安装ubuntu 16.04(全步骤)_vmwaubuntu-16.04.4-desktop-amd64.iso_ST0new的博客-CSDN博客 vmware tools使用安装:VMware——VMware Tools的介绍及安装方法_William.csj的博客-CSDN博客 …...

Vue 的组件加载顺序和渲染顺序

1、结论先行 组件的加载顺序是自上而下的,也就是先加载父组件,再递归地加载其所有的子组件。 而组件渲染顺序是按照深度优先遍历的方式,也就是先渲染最深层的子组件,再依次向上渲染其父组件。 2、案例 下面是一个简单的示例代…...

leetcode Top100(17)矩阵置零

给定一个 m x n 的矩阵,如果一个元素为 0 ,则将其所在行和列的所有元素都设为 0 。请使用 原地 算法。 示例 1: 输入:matrix [[1,1,1],[1,0,1],[1,1,1]] 输出:[[1,0,1],[0,0,0],[1,0,1]]示例 2: 输入&…...

论文精读(2)—基于稀疏奖励强化学习的机械臂运动规划算法设计与实现(内含实现机器人控制的方法)

目录 1.作者提出的问题及解决方向 2.延深-用如何用强化学习对机器人进行控制 2.1思路 2.2DQN和DDPG在机器人控制中的应用 3.解决方案 3.1思路 3.2实验 3.3创新点 4.展望 1.作者提出的问题及解决方向 目的:使机械臂在非结构化环境下实现端到端的自主学习控制…...

快速安装keepalive

快速安装keepalive #安装 yum install keepalived -y# 查看版本: rpm -q -a keepalived#修改配置文件 vim /etc/keepalived.conf虚拟 ip :随意选一个,不被占用的ip即可。...

nginx实现反向代理实例

1 前言 1.1 演示内容 在服务器上访问nginx端口然后跳转到tomcat服务器 1.2 前提条件 前提条件:利用docker安装好nginx、tomcat、jdk8(tomcat运行需要jdk环境) 只演示docker安装tomcat: 默认拉取最新版tomcat docker pull t…...

使用Freemarker填充模板导出复杂Excel,其实很简单哒!

文章目录 1. 需求分析2. 对象生成3. 列表插值4. 另存xml格式化5. ftl修改6. 程序转化7. 犯的错误8. 总结 1. 需求分析 类似这样的一个表格 我们需要从数据库中查询对应的数据,将其汇总进该表格,并且可能还需要复制表格项,我这个案例中没有&a…...

windows环境下安装logstash同步数据,注册系统服务

windows环境下安装logstash同步数据,注册系统服务 此方法适用于Windows环境,同一个配置文件配置多个管道,并且配置系统服务,防止程序被杀进程 一、安装logstash (1)下载压缩包,解压后修改con…...

java服务内存说明及配置详解

java进程内存 JVM内存分布图: 【java进程内存】【堆外内存】 【jvm堆内存】 【堆外内存】 【Metaspace】 【Direct Memory】【JNI Memory】【code_cache】 … 堆外内存泄漏的排查在于【本地内存(Native Memory)】【Direct Memory】【JNI Memory】 一般…...

Mybatis-MyBatis的缓存

Mybatis-MyBatis的缓存 一、MyBatis的一级缓存二、MyBatis的二级缓存二级缓存的相关配置 三、MyBatis缓存查询的顺序 一、MyBatis的一级缓存 一级缓存是SqlSession级别的,通过同一个SqlSession查询的数据会被缓存,下次查询相同的数据,就 会从…...

计算机组成原理之硬件的基本组成,深入介绍两大计算机结构体系,从底层出发认识计算机。

大家好,欢迎阅读《计算机组成原理》的系列文章,本系列文章主要的内容是从零学习计算机组成原理,内容通俗易懂,大家好好学习吧!!! 更多的优质内容,请点击以下链接查看哦~~ ↓ ↓ ↓ …...

二十五、MySQL事务的四大特性和常见的并发事务问题

1、事务的四大特性 2、常见的并发事务问题 (1)并发事务问题分类: (2)脏读: 一个事务正在对一条记录做修改,在这个事务完成并提交前,这条记录的数据就处于不一致的状态;…...

辨析常见的医学数据分析(相关性分析回归分析)

目录 1 常见的三种分类结果? 2 什么是相关性分析? 相关性分析的结果怎么看? 3 什么是回归分析? 1)前提 2)常见的回归模型 4 对于存在对照组实验的医学病例如何分析? 1)卡方检验…...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

【HTML-16】深入理解HTML中的块元素与行内元素

HTML元素根据其显示特性可以分为两大类&#xff1a;块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

k8s业务程序联调工具-KtConnect

概述 原理 工具作用是建立了一个从本地到集群的单向VPN&#xff0c;根据VPN原理&#xff0c;打通两个内网必然需要借助一个公共中继节点&#xff0c;ktconnect工具巧妙的利用k8s原生的portforward能力&#xff0c;简化了建立连接的过程&#xff0c;apiserver间接起到了中继节…...

高防服务器能够抵御哪些网络攻击呢?

高防服务器作为一种有着高度防御能力的服务器&#xff0c;可以帮助网站应对分布式拒绝服务攻击&#xff0c;有效识别和清理一些恶意的网络流量&#xff0c;为用户提供安全且稳定的网络环境&#xff0c;那么&#xff0c;高防服务器一般都可以抵御哪些网络攻击呢&#xff1f;下面…...

select、poll、epoll 与 Reactor 模式

在高并发网络编程领域&#xff0c;高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表&#xff0c;以及基于它们实现的 Reactor 模式&#xff0c;为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。​ 一、I…...

Pinocchio 库详解及其在足式机器人上的应用

Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库&#xff0c;专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性&#xff0c;并提供了一个通用的框架&…...

JavaScript基础-API 和 Web API

在学习JavaScript的过程中&#xff0c;理解API&#xff08;应用程序接口&#xff09;和Web API的概念及其应用是非常重要的。这些工具极大地扩展了JavaScript的功能&#xff0c;使得开发者能够创建出功能丰富、交互性强的Web应用程序。本文将深入探讨JavaScript中的API与Web AP…...

【从零开始学习JVM | 第四篇】类加载器和双亲委派机制(高频面试题)

前言&#xff1a; 双亲委派机制对于面试这块来说非常重要&#xff0c;在实际开发中也是经常遇见需要打破双亲委派的需求&#xff0c;今天我们一起来探索一下什么是双亲委派机制&#xff0c;在此之前我们先介绍一下类的加载器。 目录 ​编辑 前言&#xff1a; 类加载器 1. …...

深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向

在人工智能技术呈指数级发展的当下&#xff0c;大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性&#xff0c;吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型&#xff0c;成为释放其巨大潜力的关键所在&…...

何谓AI编程【02】AI编程官网以优雅草星云智控为例建设实践-完善顶部-建立各项子页-调整排版-优雅草卓伊凡

何谓AI编程【02】AI编程官网以优雅草星云智控为例建设实践-完善顶部-建立各项子页-调整排版-优雅草卓伊凡 背景 我们以建设星云智控官网来做AI编程实践&#xff0c;很多人以为AI已经强大到不需要程序员了&#xff0c;其实不是&#xff0c;AI更加需要程序员&#xff0c;普通人…...