当前位置: 首页 > news >正文

Stable Diffusion 参数介绍及用法

大模型 CheckPoint 介绍

作用:定调了作图风格,可以理解为指挥者
安装路径:models/Stable-diffusion
推荐
AnythingV5Ink_v32Ink.safetensors
cuteyukimixAdorable_midchapter2.safetensors
manmaruMix_v10.safetensors
counterfeitxl_v10.safetensors
darkjunglemix_V2InkFix.safetensors 在这里插入图片描述

变分自编码器 VAE (Variational Auto Encoder)

作用:滤镜效果,增加饱和度之类的,类似美颜吧
安装路径:models/VAE
推荐:暂无,不咋用
在这里插入图片描述

Clip跳过层 (Contrastive Language Image Pre-training)

作用:就是 prompt 与生成图的关联性,数值越高关系越低,反之亦然
推荐:2-4

Prompt 提示词

内容

  • 人物表情:sexy lady, smiling, curly blonde hair, big eyes
  • 服装:black suit, jeans, dress
  • 场景和环境:Universe,Galaxy,Mars,rainy day
  • 镜头:wide shot,close up,full body,portrait
  • 灯光:Cinimatic lighting, studio lighting, Neon light, high contrast, (best illumination, an extremely delicate and beautiful), (cinematic light), colorful, hyper detail, dramatic light, intricate details
  • 风格:Pixel art, surrealism, cartoon, cyberpunk
  • 质量:masterpiece, best quality, ultra-detailed, best shadow

格式

基本

词组+短句,使用英文逗号分开,核心内容推荐使用 短句

比重

括号法则,麻烦,不用,哈哈哈
数字法则,写法简单

(xxxx: 1.5)= xxxx 权重= 1 x 1.5倍
(xxxx: 0.7)= xxxx 权重= 1 x 0.7倍
推荐:尽量保持在 0.5 - 1.6 之间

融合

AND

cat AND tiger

[ tag1:tag2 ]

[cat|girl]
交替算法,13579 步渲染t cat,246810 步渲染 girl
在这里插入图片描述

渐变 [tag1:tag2:x]

[moon:sun:5] 前面 5 步画 moon,剩下的步数画 sun
在这里插入图片描述

反向提示词

常用

(worst quality:2), (low quality:2), (normal quality:2), lowres, ((monochrome)), ((grayscale)), skin spots, acnes, skin blemishes, age spot, glans,extra fingers,fewer fingers,strange fingers,bad hand (low quality, worst quality:1.4), (bad_prompt:0.8), (monochrome), bad anatomy,DeepNegative,(fat:1.2), looking away,tilted head, {Multiple people},bad anatomy,bad hands, text, error, missing fingers,extra digit, fewer digits, cropped,jpeg artifacts,signature, watermark, username,blurry,bad feet,cropped,poorly drawn hands,poorly drawn face,mutation,deformed,extra limbs,extra arms,extra legs,malformed limbs,fused fingers,too many fingers,long neck,cross-eyed,mutated hands,polar lowres,bad body,bad proportions,gross proportions,error,missing arms,missing legs, extra leg, extra foot,

采样方法 (sampling method)

当前直接采用 DPM++ 2M Karras 就好了,其他大多过时了

参数介绍及设置

  • 采样步数(Sampling steps): 调高的画,画得更精细。一般在 20-40 之间
  • CFG Scale: 数值越高越贴近提示词,但是 AI 想象力就降低。一般在 7-12 之间
  • denoising scale: 重绘幅度,越高的画,原画偏离度越大
  • 随机种子:设定某个特定值时,风格就会和seed相似

相关文章:

Stable Diffusion 参数介绍及用法

大模型 CheckPoint 介绍 作用:定调了作图风格,可以理解为指挥者 安装路径:models/Stable-diffusion 推荐: AnythingV5Ink_v32Ink.safetensors cuteyukimixAdorable_midchapter2.safetensors manmaruMix_v10.safetensors counterf…...

打印大对象日志导致GC问题的解决

内容&#xff1a; rpc调用外部服务时&#xff0c;需要将req和resp的信息打印出来&#xff0c;以便于排查问题。但是有的rpc服务的resp信息过于庞大&#xff0c;比如resp中有List<>信息&#xff0c;list很大很大时会导致log.info打印信息时&#xff0c;产生GC&#xff0c…...

【Docker】学习笔记

1. docker基本操作 镜像搜索 // 直接搜索镜像资源 docker search mysql // 搜索过滤 docker search --filter "is-officialtrue" mysql // 官方发布镜像拉取镜像 docker pull mysql查看本地镜像 docker images删除本地镜像 docker rmi mysql // 强制删除镜像 d…...

网易云信4K 8K RTC助力远程医疗的技术实践

// 编者按&#xff1a;随着近年来国家关于缓解医疗资源分配不均的一系列政策出台&#xff0c;远程医疗作为平衡医疗资源分配的有力手段&#xff0c;目前正处于强劲发展阶段。网易云信运用超高清RTC视频技术助力医疗行业实现了远程高清视频病理分析和手术示教等能力。LiveVide…...

【排序算法】冒泡排序、插入排序、归并排序、希尔排序、选择排序、堆排序、快速排序

目录 几大排序汇总 1.冒泡排序 性能: 思路和代码: 2.插入排序 性能: 思路和代码: 3.归并排序 性能: 思路和代码: 4.希尔排序 性能: 思路和代码: 5.选择排序 性能: 思路和代码: 6.堆排序 性能: 思路和代码: topK问题 7.快速排序 性能: 思路和代码: 几大排…...

Linux学习笔记-应用层篇

1、Linux进程、线程概念/区别 Linux进程和线程是计算机系统中两种不同的资源分配和调度单位。 进程是计算机系统进行资源分配和调度的基本单位&#xff0c;也被认为是正在运行的程序。在面向线程的计算机结构中&#xff0c;进程是线程的容器。进程拥有独立的内存和系统资源&am…...

MySQL数据库的存储引擎

目录 一、存储引擎概念 二、存储引擎 2.1MyISAM 2.11MyISAM的特点 2.12MyISAM表支持3种不同的存储格式&#xff1a; 2.2 InnoDB 2.21InnoDB特点介绍 三、InnoDB与MyISAM 区别 四、怎么样选择存储引擎 五、查看存储引擎 六、查看表使用的存储引擎 七、修改存储引擎 …...

Linux-多路转接-epoll

epoll 接口认识epoll_createepoll_ctlepoll_wait epoll工作原理在内核中创建的数据结构epoll模型的一个完整工作流程 epoll工作模式LT-水平触发ET-边缘触发两种方式的对比 epoll的使用场景对于poll的改进惊群效应什么是惊群效应如何解决惊群效应原子操作/mutex/spinlock如何选择…...

Java面试被问了几个简单的问题,却回答的不是很好

作者&#xff1a;逍遥Sean 简介&#xff1a;一个主修Java的Web网站\游戏服务器后端开发者 主页&#xff1a;https://blog.csdn.net/Ureliable 觉得博主文章不错的话&#xff0c;可以三连支持一下~ 如有需要我的支持&#xff0c;请私信或评论留言&#xff01; 前言 前几天参加了…...

概率论几种易混淆的形式

正态分布标准型 x − μ σ \frac{x - \mu}{\sigma} σx−μ​ 大数定律形式 P { X ≤ ∑ i 1 n x i − n μ n σ 2 } ∫ − ∞ X 1 2 π e − x 2 2 d x P\{X \le \frac{\sum_{i 1}^{n}x_i -n\mu}{\sqrt{n\sigma^2}} \} \int _{-\infty}^{X}\frac{1}{\sqrt{2\pi}}e^{-\fr…...

PyTorch数据增强后的结果展示

from PIL import Image import torch from torchvision import transformstrans transforms.Compose([transforms.ToTensor(), transforms.RandomErasing(p0.9, value 120, inplaceTrue)]) # 这里Compose是所做的变换img_path 02-56-45-060-1454-camra1.bmp img Image.open…...

指定程序在哪个GPU上运行

摘要&#xff1a; 当本地&#xff08;或服务器&#xff09;有个多个GPU时&#xff0c;需要指定程序在指定GPU上运行&#xff0c;需要做以下设置。 目录 一、在终端上指定GPU二、在程序中指定GPU三、系统变量指定GPU四、pytorch中指定GPU 一、在终端上指定GPU 在终端运行程序时…...

Linux CentOS7 vim多文件编辑

使用vim编辑多个文件&#xff0c;十分常用的操作。本文从打开、显示、切换文件到退出&#xff0c;进行简单讨论。 一、打开文件 1.一次打开多个文件 vim还没有启动的时候&#xff0c;在终端里输入vim file1 file2 … filen便可以打开所有想要打开的文件。 执行命令 vim fil…...

PAT甲级真题1153: 解码PAT准考证

&#x1f57a;作者&#xff1a; 主页 我的专栏C语言从0到1探秘C数据结构从0到1探秘Linux菜鸟刷题集 &#x1f618;欢迎关注&#xff1a;&#x1f44d;点赞&#x1f64c;收藏✍️留言 &#x1f3c7;码字不易&#xff0c;你的&#x1f44d;点赞&#x1f64c;收藏❤️关注对我真的…...

linux信号

title: linux信号 createTime: 2020-10-29 18:05:52 updateTime: 2020-10-29 18:05:52 categories: linux tags: SIGHUP 终止进程 终端线路挂断[喝小酒的网摘]http://blog.hehehehehe.cn/a/16999.htm SIGINT 终止进程 中断进程 SIGQUIT 建立CORE文件终止进程&#xff0c;并且生…...

JavaWeb开发-05-SpringBootWeb请求响应

一.请求 1.Postman 2.简单参数 ​ package com.wjh.controller;import org.springframework.web.bind.annotation.RequestMapping; import org.springframework.web.bind.annotation.RestController;import javax.servlet.http.HttpServletRequest;/** 测试请求参数接受*/ R…...

Ubuntu下载

参考文档&#xff1a; 镜像文件&#xff1a;VMware下安装ubuntu 16.04&#xff08;全步骤&#xff09;_vmwaubuntu-16.04.4-desktop-amd64.iso_ST0new的博客-CSDN博客 vmware tools使用安装&#xff1a;VMware——VMware Tools的介绍及安装方法_William.csj的博客-CSDN博客 …...

Vue 的组件加载顺序和渲染顺序

1、结论先行 组件的加载顺序是自上而下的&#xff0c;也就是先加载父组件&#xff0c;再递归地加载其所有的子组件。 而组件渲染顺序是按照深度优先遍历的方式&#xff0c;也就是先渲染最深层的子组件&#xff0c;再依次向上渲染其父组件。 2、案例 下面是一个简单的示例代…...

leetcode Top100(17)矩阵置零

给定一个 m x n 的矩阵&#xff0c;如果一个元素为 0 &#xff0c;则将其所在行和列的所有元素都设为 0 。请使用 原地 算法。 示例 1&#xff1a; 输入&#xff1a;matrix [[1,1,1],[1,0,1],[1,1,1]] 输出&#xff1a;[[1,0,1],[0,0,0],[1,0,1]]示例 2&#xff1a; 输入&…...

论文精读(2)—基于稀疏奖励强化学习的机械臂运动规划算法设计与实现(内含实现机器人控制的方法)

目录 1.作者提出的问题及解决方向 2.延深-用如何用强化学习对机器人进行控制 2.1思路 2.2DQN和DDPG在机器人控制中的应用 3.解决方案 3.1思路 3.2实验 3.3创新点 4.展望 1.作者提出的问题及解决方向 目的&#xff1a;使机械臂在非结构化环境下实现端到端的自主学习控制…...

<6>-MySQL表的增删查改

目录 一&#xff0c;create&#xff08;创建表&#xff09; 二&#xff0c;retrieve&#xff08;查询表&#xff09; 1&#xff0c;select列 2&#xff0c;where条件 三&#xff0c;update&#xff08;更新表&#xff09; 四&#xff0c;delete&#xff08;删除表&#xf…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统&#xff0c;智慧工地全套源码&#xff0c;java版智慧工地源码&#xff0c;支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求&#xff0c;提供“平台网络终端”的整体解决方案&#xff0c;提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

【Linux】C语言执行shell指令

在C语言中执行Shell指令 在C语言中&#xff0c;有几种方法可以执行Shell指令&#xff1a; 1. 使用system()函数 这是最简单的方法&#xff0c;包含在stdlib.h头文件中&#xff1a; #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)

服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

Swagger和OpenApi的前世今生

Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章&#xff0c;二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑&#xff1a; &#x1f504; 一、起源与初创期&#xff1a;Swagger的诞生&#xff08;2010-2014&#xff09; 核心…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2

每日一言 今天的每一份坚持&#xff0c;都是在为未来积攒底气。 案例&#xff1a;OLED显示一个A 这边观察到一个点&#xff0c;怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 &#xff1a; 如果代码里信号切换太快&#xff08;比如 SDA 刚变&#xff0c;SCL 立刻变&#…...

【Java学习笔记】BigInteger 和 BigDecimal 类

BigInteger 和 BigDecimal 类 二者共有的常见方法 方法功能add加subtract减multiply乘divide除 注意点&#xff1a;传参类型必须是类对象 一、BigInteger 1. 作用&#xff1a;适合保存比较大的整型数 2. 使用说明 创建BigInteger对象 传入字符串 3. 代码示例 import j…...

使用Spring AI和MCP协议构建图片搜索服务

目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式&#xff08;本地调用&#xff09; SSE模式&#xff08;远程调用&#xff09; 4. 注册工具提…...

C++:多态机制详解

目录 一. 多态的概念 1.静态多态&#xff08;编译时多态&#xff09; 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1&#xff09;.协变 2&#xff09;.析构函数的重写 5.override 和 final关键字 1&#…...

什么是VR全景技术

VR全景技术&#xff0c;全称为虚拟现实全景技术&#xff0c;是通过计算机图像模拟生成三维空间中的虚拟世界&#xff0c;使用户能够在该虚拟世界中进行全方位、无死角的观察和交互的技术。VR全景技术模拟人在真实空间中的视觉体验&#xff0c;结合图文、3D、音视频等多媒体元素…...