排序算法二 归并排序和快速排序
目录
归并排序
快速排序
1 挖坑法编辑
2 Hoare法
快排的优化
快排的非递归方法
七大排序算法复杂度及稳定性分析
归并排序
归并排序是建立在归并操作上的一种有效的排序算法,将以有序的子序列合并,得到完全有序的序列,即先使每个子序列有序,在使子序列段间有序.若将两个有序的序列合并成一个有序表,成为二路归并.
归并排序的递归写法:
1: 首先建行区间一分为二,分裂点 : mid = ( left + right ) / 2;
2: 递归的对两个子区间array[left..mid] 和 array[mid+1 ... right]进行归并排序.递归的终止条件是子区间的长度为1.
3: 将两个子区间归并为一个有序的空间.但我们归并右树的时候不是从原来数组的0下标开始,所以我们在归并的时候要加上他原来数组所在的下标 即 array[i + start] = tmp[i];
代码:
public void mergeSort(int[] array) {sort(array,0,array.length-1)}private void sort(int[] array,int left,int right) {if(left >= right) {return;}int mid = (left + right) / 2;sort(array,left,mid);sort(array,mid+1,right);//合并merge(array,left,right,mid);}//合并private void merge(int[] array,int start,int end,int mid) {int s1 = start;int s2 = mid + 1;int[] tmp = new int[end - start + 1];int k = 0;while(s1 <= mid && s2 <= end) {if(array[s1] <= array[s2]) {tmp[k++] = array[s1++];} else {tmp[k++] = array[s2++];}}while(s1 <= mid) {tmp[k++] = array[s1++]}while(s2 <= end) {tmp[k++] = array[s2++];}for (int i = 0; i < tmp.length; i++) {array[i + start] = tmp[i];}}
}
归并排序的非递归写法:
首先将一组序列的每个元素看做一个单独的序列,进行比较之后排好序,然后在每两个一组进行比较,直到组数和和序列的个数相同,序列就拍好序了
归并排序的特性总结 :
归并排序的时间复杂度是O(N* log₂N),空间复杂度是O(N),稳定性是稳定的排序
快速排序
快速排序是一种二叉树结构的交换排序方法,其基本思想是任取待排序元素序列中的某元素作为基准值,按照该排序码将待排序结合分割成两子序列,左子序列中所有元素均小于基准值,右子序列中所有元素均大于基准值,然后按照左右子序列重复该过程,直到所有元素排列在相应位置上位置.
动图展示
快速排序有很多方法,在这里我主要讲两种方法
1 挖坑法
首先我们在这个排序序列中随便找一个基准值,通常为了方便,以第一个数作为基准值,然后我们从后往前找比基准值小的元素,找到后把这个元素放到基准值的位置
然后我们从前往后找比基准值大的元素,然后把这个元素放到坑里.会出现一个新的坑
然后重复上面操作直到将left和right相遇,我们把基准值放到坑位里面.
代码展示
大家想想,我们在内层while循环中, <= 和 >=能换成> 和 < 吗?
答案是不可以的
当最后一个元素和第一个元素大小相等的时候,如果取 > 和 < 的情况下,是要进行和基准值交换的,当从后往前走完后,从前往后走,又满足交换条件,这样就成了死循环.
2 Hoare法
同样的方法我们先找一个基准,然后从后往前找比基准值小的,找到后从前往后找比基准值大的,找到后交换两个的位置
然后重复上面的操作直到lleft和right相遇
然后让array[left] 和基准值交换位置,我们发现比基准值小的都在基准值的左边,比基准值大的都在基准值的右边
根据两种方法的比较,我们会发现两种序列的顺序是不一样的,
当我们左边找基准值的时候,为什么要从右边先走呢?
以Hoare法为例,当我们先从左边走,在走右边,交换后right位置的值一定比基准值大,当Left和right相遇的时候,将左边的值和基准值交换,较大值就排到前面去了,就不满足基准值左边的都比基准值小的性质了
快速排序的基本特性
快速排序是一种二叉树结构的交换排序方法.
时间复杂度: 最好的情况 O(N * log₂ N) ,最坏的情况给的序列本来就有序,在递归的时候只会是一棵单支树,树的高度就为N,时间复杂度为O(N ^ 2),
空间复杂度: 最好情况: O(log₂ N), 最坏情况 : O(N)
稳定性: 不稳定的
快速排序需要再系统内部用一个栈来实现递归,每层递归调用时的指针和参数均需要用栈来存放,快速排序的递归过程可以用一颗二叉树来表示,当数据量较大时,在最坏的情况时,可能会发生栈溢出异常,所以我们要对快速排序进行优化.
快排的优化
三数取中法
在一组排序序列中,我们选取三个数,分别是第一个数,中间位置的数和最后一个数,在这三个数中选取中间大的数作为基准数. 这样就不会出现单支树的情况.
如何在三个数中找中间大的数呢?
快速排序是一种二叉树结构的交换排序方法.在二叉树中,层数越多,下面的节点数就越多,也趋于有序,在后面两层可以直接使用直接插入法进行排序,减少递归的次数.
public void quickSort(int[] array) {quick(array,0,array.length-1);}private void quick(int[]array,int start, int end) {if(start >= end) {return ;}if(end - start + 1 <= 14) {//插入排序insertSoft2(array,start,end);return;}int index = midThree(array,start,end);swap(array,index,start);int piovt = partition(array,start,end);quick(array,start,piovt-1);quick(array,piovt+1,end);}private int partition(int[] array,int left,int right) {int tmp = array[left];int i = left;while(left < right) {while(left < right && array[right] >= tmp) {right--;}array[left] = array[right];while(left < right && array[left] <= tmp) {left++;}swap(array,left,right);}swap(array,left,i);return left;}public static void insertSoft2(int[] array,int left,int right) {for(int i = left+1; i <= right;i++) {int tmp = array[i];int j = i -1;for(j =i-1; j >= left ;j--) {if(array[j] > tmp) {array[j+1] = array[j];} else {array[j+1] = tmp;break;}}array[j+1] = tmp;}}
快排的非递归方法
在第一次找到基准值之后,我们将基准值左边和右边的下标放到栈中,第一次弹出栈顶元素给到right在弹出栈顶元素给left.重新找基准值,找到后把基准值左右两边重新入栈,重复上述操作但当基准值左右两边只有一个元素的时候,就不需要再入栈,此时已经是有序的了,把最开始的基准值右边的排完后,排基准值左边的.,直到栈为空的时候,排完序.
第一次弹出栈顶元素给到right在弹出栈顶元素给left.重新找基准值,找到后把基准值左右两边重新入栈,重复上述操作但当栈为空的时候排序完成
public void quickSort(int[] array) {Deque<Integer> stack = new LinkedList<>();int left = 0;int right = array.length - 1;int pivot = partition(array,left,right);if(pivot > left + 1) {stack.push(left);stack.push(pivot -1);}if(pivot < right- 1) {stack.push(pivot+ 1);stack.push(right);}while(!stack.isEmpty()) {right = stack.pop();left = stack.pop();pivot = partition(array,left,right);if(pivot > left + 1) {stack.push(left);stack.push(pivot -1);}if(pivot < right- 1) {stack.push(pivot+ 1);stack.push(right);}}
}
private int partition(int[] array,int left,int right) {int tmp = array[left];while(left < right) { while(left < right && array[right] >= tmp) {right--;}array[left] = array[right];while(left < right && array[left] <= tmp) {left++;}array[right] = array[left];}array[left] = tmp;return left;}}
七大排序算法复杂度及稳定性分析
相关文章:

排序算法二 归并排序和快速排序
目录 归并排序 快速排序 1 挖坑法编辑 2 Hoare法 快排的优化 快排的非递归方法 七大排序算法复杂度及稳定性分析 归并排序 归并排序是建立在归并操作上的一种有效的排序算法,将以有序的子序列合并,得到完全有序的序列,即先使每个子序列有序,在使子序列段间有序.若将两…...

活动回顾 | 暴雨也无法阻挡的奔赴,2023 Meet TVM · 深圳站完美收官!
2023 Meet TVM 深圳站于 2023 年 9 月 16 日在腾讯大厦成功举办,百余名参与者亲临现场,聆听讲师们的精彩分享。 作者 | xixi 编辑 | 三羊 本文首发于 HyperAI 超神经微信公众平台~ **由 MLC.AI 社区和 HyperAI超神经主办,Openbayes贝式计算…...

JAVA_多线程的实现方式
线程的状态 方式一: public class Thread1 extends Thread {Overridepublic void run() {synchronized (this) {for (int i 0; i < 100; i) {System.out.println(getName() "" i);}}} } Thread1 thread1 new Thread1(); thread1.start(); 方式二…...

Android AndroidStudro版本gradle版本对应
详情网站:Android studio版本对用的gradle版本和插件版本(注意事项)...
Windows所有的端口及端口对应的程序
Windows所有的端口及端口对应的程序 1.查询Windows的端口 在CMD窗口运行: netstat -ano 结果示例: 活动连接协议 本地地址 外部地址 状态 PIDTCP 0.0.0.0:135 0.0.0.0:0 LISTENING 1156T…...

【Kafka系列】(二)Kafka的基本使用
有的时候博客内容会有变动,首发博客是最新的,其他博客地址可能会未同步,认准https://blog.zysicyj.top 首发博客地址[1] 文章更新计划[2] 系列文章地址[3] Kafka 线上集群部署方案怎么做 操作系统 先说结论,Kafka 部署在 Linux 上要比 Window…...

2023年下半年软考高级系统架构设计师论文指南(收藏)
由于今年下半年软考改为了机考,所以今年是看大家码字的速度了,但是好处还是有的,错了还能删除,之前纸质的 还有点不方便。 1、选择题目 (1)控制选题的时间。不要浪费太多时间在纠结选题上面。 ÿ…...
数据结构之【动态数组】
1. 线性表 概念:线性表是n个具有相同特性的数据元素的有限序列。 常见的线性表有:数组、链表、栈、队列、字符串…… 特点: 保存在这个结构中的元素都是相同的数据类型。元素之间线性排列,元素之间在逻辑上是连续的。 线性表…...

解答嵌入式和单片机的关系
嵌入式系统是一种特殊的计算机系统,用于特定任务或功能。而单片机则是嵌入式系统的核心部件之一,是一种在单个芯片上集成了处理器、内存、输入输出接口等功能的微控制器。刚刚好我这里有一套单片机保姆式教学,里面有编程教学、问题讲解、语言…...

利用Pycharm将python程序打包为exe文件(亲测可用)
最近做了一个关于py的小项目,对利用Pycharm将python文件打包为exe文件不是很熟悉,故学习记录之。 目录 一、下载pyinstaller库 二、打开Pycharm进行打包(不更改图标) 三、打开Pycharm进行打包(更改图标)…...

解决Vue设置图片的动态src不生效的问题
一、问题描述 在vue项目中,想要动态设置img的src时,此时发现图片会加载失败。在Vue代码中是这样写的: 在Vue的data中是这样写的: 我的图片在根目录下的static里面: 但是在页面上这个图片却无法加载出来。 二、解决方案…...
企业关键数据采集如何做
数据对于企业的重要性不言而喻,目前又处于大数据时代,企业对于数据的解读将是辅助决策最重要的一环。依据所掌握的数据信息,帮助企业做决策的优化。然而,在企业的关键数据采集并不是一项简单轻松的任务,他需要企业投入…...

抖音SEO矩阵系统源码开发搭建
1. 确定需求和功能:明确系统的主要目标和需要实现的功能,包括关键词研究、短视频制作、外链建设、数据分析、账号设置优化等方面。 2. 设计系统架构:根据需求和功能确定系统的架构,包括前端、后端、数据库等部分的设计࿰…...
20230925工作心得
1、如果使用map的时候,担心key重复,覆盖掉值 那么直接加个if/else判断就好了。 如果map.containsKey,那么就把值追加上去,否则就直接put。 2、list的removeAll方法 list.removeAll(list2);//list要removeAll谁,就是看list自己比…...

ESP32在CAN(TWAI)波特率不同时收发数据,导致总线错误无法恢复
问题描述: 总线上有两个设备,主机:100ms周期发送数据。从机:以不同波特率发送数据,再把从机波特率调节至主机波特率一致无法通信。 环境:VSCODE IDF-v5.0 问题分析: 我们先看下ESP32技术参…...
精简版背包问题|01背包、完全背包、多重背包
背包问题 01背包问题 有n个物品,它们有各自的体积w和价值v,现有给定容量W的背包,在总体积不超过背包承载上限的情况下,如何让背包里装入的物品具有最大的价值总和?(每个物品最多可使用一次) w(…...

五、核支持向量机算法(NuSVC,Nu-Support Vector Classification)(有监督学习)
和支持向量分类(Nu-Support Vector Classification),与 SVC 类似,但使用一个参数来控制支持向量的数量,其实现基于libsvm 一、算法思路 本质都是SVM中的一种优化,原理都类似,详细算法思路可以参考博文:三…...

个人废品回收小程序制作步骤详解
在当今的环保时代,个人废品回收小程序的发展显得尤为重要。为了满足这一需求,本文将详细介绍如何制作一个个人废品回收小程序。 第一步,进入乔拓云网后台,点击【轻应用小程序】进入设计小程序页面。在这个页面,你可以看…...

Python爬虫自动切换爬虫ip的完美方案
在进行网络爬虫时,经常会遇到需要切换爬虫ip的情况,以绕过限制或保护自己的爬虫请求。今天,我将为你介绍Python爬虫中自动切换爬虫ip的终极方案,让你的爬虫更加高效稳定。 步骤一:准备爬虫ip池 首先,你需要…...

IDEA新建.xml文件显示为普通文本
情况如下: 1. 在XML文件中添加*.xml的文件名模式 2. 在文本中,选中*.xml进行删除...
golang循环变量捕获问题
在 Go 语言中,当在循环中启动协程(goroutine)时,如果在协程闭包中直接引用循环变量,可能会遇到一个常见的陷阱 - 循环变量捕获问题。让我详细解释一下: 问题背景 看这个代码片段: fo…...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...

RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文全面剖析RNN核心原理,深入讲解梯度消失/爆炸问题,并通过LSTM/GRU结构实现解决方案,提供时间序列预测和文本生成…...

ubuntu22.04有线网络无法连接,图标也没了
今天突然无法有线网络无法连接任何设备,并且图标都没了 错误案例 往上一顿搜索,试了很多博客都不行,比如 Ubuntu22.04右上角网络图标消失 最后解决的办法 下载网卡驱动,重新安装 操作步骤 查看自己网卡的型号 lspci | gre…...

沙箱虚拟化技术虚拟机容器之间的关系详解
问题 沙箱、虚拟化、容器三者分开一一介绍的话我知道他们各自都是什么东西,但是如果把三者放在一起,它们之间到底什么关系?又有什么联系呢?我不是很明白!!! 就比如说: 沙箱&#…...
2.2.2 ASPICE的需求分析
ASPICE的需求分析是汽车软件开发过程中至关重要的一环,它涉及到对需求进行详细分析、验证和确认,以确保软件产品能够满足客户和用户的需求。在ASPICE中,需求分析的关键步骤包括: 需求细化:将从需求收集阶段获得的高层需…...

性能优化中,多面体模型基本原理
1)多面体编译技术是一种基于多面体模型的程序分析和优化技术,它将程序 中的语句实例、访问关系、依赖关系和调度等信息映射到多维空间中的几何对 象,通过对这些几何对象进行几何操作和线性代数计算来进行程序的分析和优 化。 其中࿰…...
大模型的LoRa通讯详解与实现教程
一、LoRa通讯技术概述 LoRa(Long Range)是一种低功耗广域网(LPWAN)通信技术,由Semtech公司开发,特别适合于物联网设备的长距离、低功耗通信需求。LoRa技术基于扩频调制技术,能够在保持低功耗的同时实现数公里甚至数十公里的通信距离。 LoRa的主要特点 长距离通信:在城…...
Three.js进阶之粒子系统(一)
一些特定模糊现象,经常使用粒子系统模拟,如火焰、爆炸等。Three.js提供了多种粒子系统,下面介绍粒子系统 一、Sprite粒子系统 使用场景:下雨、下雪、烟花 ce使用代码: var materialnew THRESS.SpriteMaterial();//…...

CSS(2)
文章目录 Emmet语法快速生成HTML结构语法 Snipaste快速生成CSS样式语法快速格式化代码 快捷键(VScode)CSS 的复合选择器什么是复合选择器交集选择器后代选择器(重要)子选择器(重要)并集选择器(重要)**链接伪类选择器**focus伪类选…...