精简版背包问题|01背包、完全背包、多重背包
背包问题
01背包问题
有n个物品,它们有各自的体积w和价值v,现有给定容量W的背包,在总体积不超过背包承载上限的情况下,如何让背包里装入的物品具有最大的价值总和?(每个物品最多可使用一次)
w(i) 表示第i个物品的体积,v(i) 表示第i个物品的价值,
dp[i,j] : 当前背包容量为j,前i个物品最佳组合对应的价值。
不装入第i个商品,则dp[i,j] = dp[i-1, j],
装入第i个商品, 则dp[i,j] = dp[i-1, j-w(i)] + v(i),
dp[i,j] = max{dp[i-1, j], dp[i-1, j-w(i)] + v(i)} j>=w(i).
完全背包问题
有n种物品和一个容量为W的背包,第i种物品的体积是w(i),价值是v(i)。在总体积不超过背包承载上限的情况下,求解将哪些物品装入背包,可使这些物品的总价值最大。(每种物品都有无限件可用)
从装入第i种物品多少件出发,01背包只有两种情况即取0件和取1件,而这里是取0件、1件、2件…直到超过限重(k>j/w(i))
dp[i][j] : 当前背包容量为j,前i个物品最佳组合对应的价值。
#k为装入第i种物品的件数,k<=j/w(i)
dp[i][j] = max{ (dp[i-1][j- kw(i)] + kv(i) ) for every k }
多重背包问题
有n种物品和一个容量为W的背包,第i种物品的数量为s(i),体积是w(i),价值是v(i)。在总体积不超过背包承载上限的情况下,求解将哪些物品装入背包,可使这些物品的总价值最大。(每种物品的数量有限制)
从装入第i种物品多少件出发,取0件、1件、2件…s(i)件,还要满足不超过限重。
dp[i][j]: 当前背包容量为j,前i个物品最佳组合对应的价值。
#k为装入第i种物品的件数,k<= min{ s(i), j/w(i)}
dp[i][j] = max{ (dp[i-1][j-kw(i)] + kv(i)) for every k}
胡乱的参考链接-_-||
https://blog.csdn.net/woomay/article/details/133162560?spm=1001.2014.3001.5501
https://blog.csdn.net/weixin_41082481/article/details/115922389?spm=1001.2101.3001.6650.1&utm_medium=distribute.pc_relevant.none-task-blog-2defaultBlogCommendFromBaiduRate-1-115922389-blog-72900009.235%5Ev38%5Epc_relevant_default_base3&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2defaultBlogCommendFromBaiduRate-1-115922389-blog-72900009.235%5Ev38%5Epc_relevant_default_base3&utm_relevant_index=2
动态规划-背包问题
https://blog.csdn.net/qq_37767455/article/details/99086678
https://zhuanlan.zhihu.com/p/93857890
https://blog.csdn.net/qq_38410730/article/details/81667885
【动态规划】01背包问题(通俗易懂,超基础讲解)
https://www.zhihu.com/question/23995189 什么是动态规划(Dynamic Programming)?动态规划的意义是什么?
https://www.cnblogs.com/mhpp/p/7700235.html 动态规划初探及什么是无后效性? (转)
https://www.zdaiot.com/DataStructureAlgorithm/40%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%E7%90%86%E8%AE%BA%EF%BC%9A%E4%B8%80%E7%AF%87%E6%96%87%E7%AB%A0%E5%B8%A6%E4%BD%A0%E5%BD%BB%E5%BA%95%E6%90%9E%E6%87%82%E6%9C%80%E4%BC%98%E5%AD%90%E7%BB%93%E6%9E%84%E3%80%81%E6%97%A0%E5%90%8E%E6%95%88%E6%80%A7%E5%92%8C%E9%87%8D%E5%A4%8D%E5%AD%90%E9%97%AE%E9%A2%98/
0动态规划理论:一篇文章带你彻底搞懂最优子结构、无后效性和重复子问题
https://blog.csdn.net/qq_30137611/article/details/77655707 什么是无后效性?
https://juejin.cn/post/6951922898638471181
看一遍就理解:动态规划详解
https://houbb.github.io/2020/01/23/data-struct-learn-07-base-dp#%E6%9C%80%E5%B0%8F%E8%B7%AF%E5%BE%84%E4%B9%8B%E5%92%8C
五大基本算法之动态规划算法
https://zhuanlan.zhihu.com/p/368901684?utm_campaign=&utm_medium=social&utm_oi=740423421275422720&utm_psn=1689458562500431873&utm_source=zhihu
https://www.zhihu.com/question/484180920/answer/2574186966?utm_campaign=&utm_medium=social&utm_oi=740423421275422720&utm_psn=1689463449510371328&utm_source=zhihu
https://seramasumi.github.io/docs/Algorithms/mc-%E5%BE%AE%E8%AF%BE%E5%A0%82-%E8%83%8C%E5%8C%85%E9%97%AE%E9%A2%98.html
https://programmercarl.com/%E8%83%8C%E5%8C%85%E9%97%AE%E9%A2%98%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%80%E5%AE%8C%E5%85%A8%E8%83%8C%E5%8C%85.html#%E7%AE%97%E6%B3%95%E5%85%AC%E5%BC%80%E8%AF%BE
https://blog.csdn.net/qq_37767455/article/details/99086678
https://blog.csdn.net/Biteht/article/details/124298926?spm=1001.2014.3001.5501
数据结构与算法—算法篇之动态规划(一)
https://blog.csdn.net/chinawangfei/article/details/123585910?utm_medium=distribute.pc_relevant.none-task-blog-2defaultbaidujs_baidulandingword~default-0-123585910-blog-99086678.235v38pc_relevant_sort_base3&spm=1001.2101.3001.4242.1&utm_relevant_index=1
背包问题之0-1背包算法详解
https://blog.csdn.net/char_m/article/details/107112564?utm_medium=distribute.pc_relevant.none-task-blog-2defaultbaidujs_baidulandingword~default-13-107112564-blog-99086678.235v38pc_relevant_sort_base3&spm=1001.2101.3001.4242.8&utm_relevant_index=14
https://blog.csdn.net/mu399/article/details/7722810
动态规划之01背包问题(最易理解的讲解)
https://github.com/youngyangyang04/leetcode-master/blob/master/problems/%E8%83%8C%E5%8C%85%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%8001%E8%83%8C%E5%8C%85-1.md
https://zhuanlan.zhihu.com/p/93857890
动态规划之背包问题系列
https://blog.csdn.net/woshi250hua/article/details/7636866
【DP_背包专辑】【10.14最新更新】
https://blog.csdn.net/weixin_41082481/article/details/115922389?spm=1001.2101.3001.6650.1&utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromBaidu%7ERate-1-115922389-blog-72900009.235%5Ev38%5Epc_relevant_default_base3&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromBaidu%7ERate-1-115922389-blog-72900009.235%5Ev38%5Epc_relevant_default_base3&utm_relevant_index=2
动态规划-背包问题
相关文章:
精简版背包问题|01背包、完全背包、多重背包
背包问题 01背包问题 有n个物品,它们有各自的体积w和价值v,现有给定容量W的背包,在总体积不超过背包承载上限的情况下,如何让背包里装入的物品具有最大的价值总和?(每个物品最多可使用一次) w(…...
五、核支持向量机算法(NuSVC,Nu-Support Vector Classification)(有监督学习)
和支持向量分类(Nu-Support Vector Classification),与 SVC 类似,但使用一个参数来控制支持向量的数量,其实现基于libsvm 一、算法思路 本质都是SVM中的一种优化,原理都类似,详细算法思路可以参考博文:三…...
个人废品回收小程序制作步骤详解
在当今的环保时代,个人废品回收小程序的发展显得尤为重要。为了满足这一需求,本文将详细介绍如何制作一个个人废品回收小程序。 第一步,进入乔拓云网后台,点击【轻应用小程序】进入设计小程序页面。在这个页面,你可以看…...
Python爬虫自动切换爬虫ip的完美方案
在进行网络爬虫时,经常会遇到需要切换爬虫ip的情况,以绕过限制或保护自己的爬虫请求。今天,我将为你介绍Python爬虫中自动切换爬虫ip的终极方案,让你的爬虫更加高效稳定。 步骤一:准备爬虫ip池 首先,你需要…...
IDEA新建.xml文件显示为普通文本
情况如下: 1. 在XML文件中添加*.xml的文件名模式 2. 在文本中,选中*.xml进行删除...
linux的三剑客
1、grep命令 grep全称是Global Regular Expression Print,表示全局正则表达式版本,它的使用权限是所有用户。它是Linux系统中一种强大的文本搜索工具,它能使用正则表达式搜索文本,并把匹配的行打印出来。 shell脚本中也经常使用g…...
微信小程序部分知识点总结【2】
微信小程序的原理是什么 微信小程序的原理是基于一种轻量级的应用程序模型,它允许开发者在微信客户端内部创建和运行应用程序。微信小程序采用了类似网页的技术栈,主要由两部分组成:前端和后端。 前端部分使用HTML、CSS和JavaScript等标准的…...
基于springboot+vue的云南旅游网(前后端分离)
博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战 主要内容:毕业设计(Javaweb项目|小程序等)、简历模板、学习资料、面试题库、技术咨询 文末联系获取 项目介绍…...
后缀表达式求值
后缀表达式,又称逆波兰式,指的是不包含括号,运算符放在两个运算对象的后面,所有的计算按运算符出现的顺序,严格从左向右进行。 运用后缀表达式进行计算的具体做法: 建立一个操作数栈S。然后从左到右读表达…...
基于springboot+vue的信息技术知识赛系统
博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战 主要内容:毕业设计(Javaweb项目|小程序等)、简历模板、学习资料、面试题库、技术咨询 文末联系获取 项目介绍…...
基于YOLOv8模型的垃圾满溢检测系统(PyTorch+Pyside6+YOLOv8模型)
摘要:基于YOLOv8模型的垃圾满溢检测系统可用于日常生活中检测与定位车辆垃圾(garbage)、垃圾桶(garbage_bin)和垃圾满溢(overflow)目标,利用深度学习算法可实现图片、视频、摄像头等…...
面试算法14:字符串中的变位词
题目 输入字符串s1和s2,如何判断字符串s2中是否包含字符串s1的某个变位词?如果字符串s2中包含字符串s1的某个变位词,则字符串s1至少有一个变位词是字符串s2的子字符串。假设两个字符串中只包含英文小写字母。例如,字符串s1为&quo…...
中国社科院大学-美国杜兰大学金融管理硕士暨能源管理硕士项目2023年毕业典礼
中国社科院大学-美国杜兰大学金融管理硕士暨能源管理硕士项目2023年毕业典礼 2023年9月16日,中国社会科学院大学-美国杜兰大学金融管理硕士项目暨能源管理硕士项目2023年毕业典礼在我校望京校区成功举办。 张波副校长致辞 中国社会科学院大学副校长张波教授、杜兰大…...
蓝桥杯 题库 简单 每日十题 day10
01 最少砝码 最少砝码 问题描述 你有一架天平。现在你要设计一套砝码,使得利用这些砝码 可以出任意小于等于N的正整数重量。那么这套砝码最少需要包含多少个砝码? 注意砝码可以放在天平两边。 输入格式 输入包含一个正整数N。 输出格式 输出一个整数代表…...
聊聊并发编程——多线程之synchronized
目录 一.多线程下数据不一致问题 二.锁和synchronized 2.1 并发编程三大特性 2.2引入锁概念 三.synchronized的锁实现原理 3.1 monitorenter和monitorexit 3.2synchronized 锁的升级 3.2.1偏向锁的获取和撤销 3.2.2轻量级锁的加锁和解锁 自适应自旋锁 轻量级锁的解锁…...
CompletableFuture-通用异步编程
演示Completable接口完全可以代替Future接口: CompletableFuture减少阻塞和轮询,可以传入回调对象,当异步任务完成或者发生异常时,自动 调用回调对象的回调方法。 package com.nanjing.gulimall.zhouyimo.test;import java.util…...
Vue3 封装 element-plus 图标选择器
一、实现效果 二、实现步骤 2.1. 全局注册 icon 组件 // main.ts import App from ./App.vue; import { createApp } from vue; import * as ElementPlusIconsVue from element-plus/icons-vueconst app createApp(App);// 全局挂载和注册 element-plus 的所有 icon app.con…...
超详细C语言实现——通讯录
目录 一、介绍 二、源代码 test.c: Contact.c: Contact.h: 代码运行结果: 三、开始实现 1.基本框架: 2.添加联系人: 3.显示联系人信息: 4.删除联系人信息: 5.查看指定联系人信息: 6.修改联系人…...
zabbix监控添加监控项及其监控Mysql、nginx
本届主要介绍添加监控项和修改中文乱码,监控mysql,nginx服务 一、zabbix监控添加监控项 1、配置agent服务器 在配置文件中添加: UserParameterlsq_userd,free -m | grep Mem | awk { print $3 } 服务器内存使用量 UserParameterdu,…...
Docker 部署 MongoDB 服务
拉取最新版本的 MongoDB 镜像: $ sudo docker pull mongo:latest在本地预先创建好 db 和 configdb 目录, 用于映射 MongoDB 容器内的 /data/db 和 /data/configdb 目录。 使用以下命令来运行 MongoDB 容器: $ sudo docker run -itd --name mongo --privilegedtru…...
日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻
在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)
船舶制造装配管理现状:装配工作依赖人工经验,装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书,但在实际执行中,工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...
视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)
前言: 最近在做行为检测相关的模型,用的是时空图卷积网络(STGCN),但原有kinetic-400数据集数据质量较低,需要进行细粒度的标注,同时粗略搜了下已有开源工具基本都集中于图像分割这块,…...
Kafka主题运维全指南:从基础配置到故障处理
#作者:张桐瑞 文章目录 主题日常管理1. 修改主题分区。2. 修改主题级别参数。3. 变更副本数。4. 修改主题限速。5.主题分区迁移。6. 常见主题错误处理常见错误1:主题删除失败。常见错误2:__consumer_offsets占用太多的磁盘。 主题日常管理 …...
Xela矩阵三轴触觉传感器的工作原理解析与应用场景
Xela矩阵三轴触觉传感器通过先进技术模拟人类触觉感知,帮助设备实现精确的力测量与位移监测。其核心功能基于磁性三维力测量与空间位移测量,能够捕捉多维触觉信息。该传感器的设计不仅提升了触觉感知的精度,还为机器人、医疗设备和制造业的智…...
C# winform教程(二)----checkbox
一、作用 提供一个用户选择或者不选的状态,这是一个可以多选的控件。 二、属性 其实功能大差不差,除了特殊的几个外,与button基本相同,所有说几个独有的 checkbox属性 名称内容含义appearance控件外观可以变成按钮形状checkali…...
大模型——基于Docker+DeepSeek+Dify :搭建企业级本地私有化知识库超详细教程
基于Docker+DeepSeek+Dify :搭建企业级本地私有化知识库超详细教程 下载安装Docker Docker官网:https://www.docker.com/ 自定义Docker安装路径 Docker默认安装在C盘,大小大概2.9G,做这行最忌讳的就是安装软件全装C盘,所以我调整了下安装路径。 新建安装目录:E:\MyS…...
SOC-ESP32S3部分:30-I2S音频-麦克风扬声器驱动
飞书文档https://x509p6c8to.feishu.cn/wiki/SKZzwIRH3i7lsckUOlzcuJsdnVf I2S简介 I2S(Inter-Integrated Circuit Sound)是一种用于传输数字音频数据的通信协议,广泛应用于音频设备中。 ESP32-S3 包含 2 个 I2S 外设,通过配置…...
比较数据迁移后MySQL数据库和ClickHouse数据仓库中的表
设计一个MySQL数据库和Clickhouse数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...
