[TI] [Textual Inversion] An image is worth an word
自己的理解:
根据几个图像,找出来一个关键字可以代表它们,然后我们可以再用这个关键字去生成新的东西。
提出关键字
1 Introduction

word->token->embedding
Textual Inversion过程
需要:
① a fixed, pre-trained text-to-image model (一个固定的预训练模型)
② a small image set depicting the concept(一个描述概念的小图像集)
目标:
find a single word embedding, such that "A photo of S*" will lead to the reconstructions of images from our small set
3 Method
LDM

包含两个核心组件:
1.AutoEncoder
Encoder,把
Decoder
2.Diffusion Model
LDM Loss


Text embedding

典型的文本编码器(例如 BERT)都从文本处理步骤开始
① word (in a input string) convert to a token ( an index in some pre-defined dictionary某个预定义词典中的索引)
构建一个词汇表,包含数据集中出现的所有唯一token,通常是一个字典,将每个token映射到唯一的整数ID。
②each token then linked to a embedding vector (可以通过基于索引的查找来检索。)
对于每个token,使用词汇表的ID可以查找其对应的 embedding vector。
③learned as part of the text encoder c_{\theta}
in our work
定义一个 placeholder string S_*,表示我们想要学习的 new concept
干涉 embedding process,用 embedding v_* 取代 与标记符相关的向量(本质上是把这个词注入到我们的词典中)
小结:
一串字符串文本,它的每个词可以通过 分词器 变为若干个 token,每个token可以映射到一个词向量,我们通过干预它映射词向量的过程,学得一个可以代表新特征的伪词。
Text Inversion
用 3-5张图片 depict 目标概念。
通过直接优化的方式,最小化 LDM loss,就可以找到 v_*
优化目标:

保持 \epsilon_{\theta} ,c_{\theta} 不变,重新训练LDM,来找到 V_*
小结:
通过几张图片输入到网络中,依据LDM loss,固定某些参数不变,来找到最合适的 V_*
参考资料:
Textual Inversion · AUTOMATIC1111/stable-diffusion-webui Wiki · GitHub
相关文章:
[TI] [Textual Inversion] An image is worth an word
自己的理解: 根据几个图像,找出来一个关键字可以代表它们,然后我们可以再用这个关键字去生成新的东西。 提出关键字 1 Introduction word->token->embedding Textual Inversion过程 需要: ① a fixed, pre-trained text…...
remote: The project you were looking for could not be found
git拉取公司项目时报错: remote: The project you were looking for could not be found 发生这个问题的原因,在于git账号可能并未真正登录。 我们可以通过打开电脑的凭据管理器,查看git当前的登录是否正常。 参考链接:参考...
https跳过SSL认证时是不是就是不加密的,相当于http?
https跳过SSL认证时是不是就是不加密的,相当于http?,其实不是,HTTPS跳过SSL认证并不相当于HTTP,也不意味着没有加密。请注意以下几点: HTTPS(Hypertext Transfer Protocol Secure)本质上是在HTTP的基础上…...
linux下链接
linux下链接用法 ln链接格式与介绍 linux下链接用法一、链接的使用格式二、链接的介绍 一、链接的使用格式 链接: 格式: ln 源文件 链接文件 硬链接 ln -s 源文件 链接文件 软连接 硬链接文件占磁盘空间 但是删除源文件不会影响硬链接文件 软链接文件不…...
OpenCV项目开发实战--主成分分析(PCA)的特征脸应用(附C++/Python实现源码)
什么是主成分分析? 这是理解这篇文章的先决条件。 图 1:使用蓝线和绿线显示 2D 数据的主要组成部分(红点)。 快速回顾一下,我们了解到第一个主成分是数据中最大方差的方向。第二主成分是空间中与第一主成分垂直(正交)的最大方差方向,依此类推。第一和第二主成分红点(2…...
多层感知机——MLP
源代码在此处:https://github.com/wepe/MachineLearning/tree/master/DeepLearning Tutorials/mlp 一、多层感知机(MLP)原理简介 多层感知机(MLP,Multilayer Perceptron)也叫人工神经网络(ANN&…...
HttpClientr入门
HttpClientr入门 介绍 HttpClient是Apache Jakarta Common下的子项目,可以用来提供高效的,最新的、功能丰富的支持HTTP协议的客户端编程工具包,并且它支持HTTP协议的版本和建议。 依赖导入 <dependency><groupId>org.apache.…...
网关-开放API接口签名验证方案
接口安全问题 请求身份是否合法?请求参数是否被篡改?请求是否唯一? AppId&AppSecret 请求身份 为开发者分配AppId(开发者标识,确保唯一)和AppSecret(用于接口加密,确保不易被…...
Linux知识点 -- 网络基础 -- 传输层
Linux知识点 – 网络基础 – 传输层 文章目录 Linux知识点 -- 网络基础 -- 传输层一、传输层协议1.端口号2.网络相关bash命令 二、UDP协议1.UDP报文的解包与交付2.理解UDP报文3.UDP协议的特点4.UDP应用层IO类接口5.UDP的缓冲区6.UDP使用注意事项7.基于UDP的应用层协议 三、TCP协…...
计算机视觉与深度学习-经典网络解析-AlexNet-[北邮鲁鹏]
这里写目录标题 AlexNet参考文章AlexNet模型结构AlexNet共8层:AlexNet运作流程 简单代码实现重要说明重要技巧主要贡献 AlexNet AlexNet 是一种卷积神经网络(Convolutional Neural Network,CNN)的架构。它是由Alex Krizhevsky、Il…...
Django学习笔记-实现联机对战(下)
笔记内容转载自 AcWing 的 Django 框架课讲义,课程链接:AcWing Django 框架课。 CONTENTS 1. 编写移动同步函数move_to2. 编写攻击同步函数shoot_fireball 1. 编写移动同步函数move_to 与上一章中的 create_player 同步函数相似,移动函数的同…...
一文了解什么SEO
搜索引擎优化 (SEO) 是一门让页面在 Google 等搜索引擎中排名更高的艺术和科学。 一、搜索引擎优化的好处 搜索引擎优化是在线营销的关键部分,因为搜索是用户浏览网络的主要方式之一。 搜索结果以有序列表的形式呈现,网站在该列表中的排名越高&#x…...
SpringBoot+Jpa+Thymeleaf实现增删改查
SpringBootJpaThymeleaf实现增删改查 这篇文章介绍如何使用 Jpa 和 Thymeleaf 做一个增删改查的示例。 1、pom依赖 pom 包里面添加Jpa 和 Thymeleaf 的相关包引用 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.…...
最快的包管理器--pnpm创建vue项目完整步骤
1.用npm全局安装pnpm npm install -g pnpm 2.在要创建vue项目的包下进入cmd,输入: pnpm create vue 3.输入项目名字,选择Router,Pinia,ESLint,Prettier之后点确定 4.cd到创建好的项目 ,安装依赖 cd .\刚创建好的项目名称\ p…...
算法通过村第九关-二分(中序遍历)黄金笔记|二叉搜索树
文章目录 前言1. 有序数组转二叉搜索树2. 寻找连个正序数组的中位数总结 前言 提示:有时候,我感觉自己一辈子活在两个闹钟之间,早上的第一次闹钟,以及5分钟之后的第二次闹钟。 --奥利弗萨克斯《意识的河流》 每个专题都有简单题&a…...
Mock.js之Element-ui搭建首页导航与左侧菜单
🎬 艳艳耶✌️:个人主页 🔥 个人专栏 :《Spring与Mybatis集成整合》《springMvc使用》 ⛺️ 生活的理想,为了不断更新自己 ! 1、Mock.js的使用 1.1.什么是Mock.js Mock.js是一个模拟数据的生成器,用来帮助前…...
robotframework在Jenkins执行踩坑
1. Groovy Template file [robot_results.groovy] was not found in $JENKINS_HOME/email_template 1.需要在managed files 添加robot_results.groovy。这个名字需要和配置在构建项目里default content一致(Extended E-mail Notification默认设置里Default Content…...
关于ElementUI之首页导航与左侧菜单实现
目录 一.Mock 1.1.什么是Mock.js 1.2.特点 1.3.安装与配置 1.3.1. 安装mock.js 1.3.2.引入mock.js 1.4.mockjs使用 1.4.1.定义测试数据文件 1.4.2.mock拦截Ajax请求 1.4.3.界面代码优化 二.总线 2.1.是什么 2.2.前期准备 2.3.配置组件与路由关系 2.3.1. 配置组件 …...
基于springboot小区疫情防控系统
博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战 主要内容:毕业设计(Javaweb项目|小程序等)、简历模板、学习资料、面试题库、技术咨询 文末联系获取 项目介绍…...
【k8s】YAML语言基础
文章目录 YAML介绍语法支持的数据类型注意事项json与yaml互转 YAML介绍 YAML是一个类似于XML、JSON的标记语言。强调以数据为中心,并不是以标记语言为中心 <heima><age>15</age><address>Beijing</address> </heima>heima:age:…...
超短脉冲激光自聚焦效应
前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...
Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...
【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密
在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...
django filter 统计数量 按属性去重
在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...
leetcodeSQL解题:3564. 季节性销售分析
leetcodeSQL解题:3564. 季节性销售分析 题目: 表:sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...
HTML前端开发:JavaScript 常用事件详解
作为前端开发的核心,JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例: 1. onclick - 点击事件 当元素被单击时触发(左键点击) button.onclick function() {alert("按钮被点击了!&…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...
LeetCode - 199. 二叉树的右视图
题目 199. 二叉树的右视图 - 力扣(LeetCode) 思路 右视图是指从树的右侧看,对于每一层,只能看到该层最右边的节点。实现思路是: 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...
算法打卡第18天
从中序与后序遍历序列构造二叉树 (力扣106题) 给定两个整数数组 inorder 和 postorder ,其中 inorder 是二叉树的中序遍历, postorder 是同一棵树的后序遍历,请你构造并返回这颗 二叉树 。 示例 1: 输入:inorder [9,3,15,20,7…...
TCP/IP 网络编程 | 服务端 客户端的封装
设计模式 文章目录 设计模式一、socket.h 接口(interface)二、socket.cpp 实现(implementation)三、server.cpp 使用封装(main 函数)四、client.cpp 使用封装(main 函数)五、退出方法…...
