当前位置: 首页 > news >正文

一篇文章彻底搞懂熵、信息熵、KL散度、交叉熵、Softmax和交叉熵损失函数

文章目录

  • 一、熵和信息熵
    • 1.1 概念
    • 1.2 信息熵公式
  • 二、KL散度和交叉熵
    • 2.1 KL散度(相对熵)
    • 2.2 交叉熵
  • 三、Softmax和交叉熵损失函数
    • 3.1 Softmax
    • 3.2 交叉熵损失函数


一、熵和信息熵

1.1 概念

 1. 熵是一个物理学概念,它表示一个系统的不确定性程度,或者说是一个系统的混乱程度

 2. 信息熵:一个叫香农的美国数学家将熵引入信息论中,用来衡量信息的不确定性,并将它命名为 “香农熵” 或者 “信息熵”。

熵和信息熵的区别就是应用领域和具体含义是不同的。
就像其他地方话叫帅哥,而广东话叫靓仔。
熵 vs 信息熵 类似于 帅哥 vs 靓仔。

1.2 信息熵公式

 1. 信息熵公式如下所示,其中n表示随机变量的可能取值数,x表示随机变量,P(x)表示随机变量的概率函数。

在这里插入图片描述
 2. 一个简单的例子应用信息熵的公式:

在这里插入图片描述
在这里插入图片描述

二、KL散度和交叉熵

2.1 KL散度(相对熵)

 1. KL散度:是两个概率分布间差异的非对称性度量,KL散度也被称为相对熵。 通俗的说法:KL散度是用来衡量同一个随机变量的两个不同分布之间的距离。

在这里插入图片描述
 2. KL散度公式如下,其中P( p) 是真实分布,Q(q)是用于拟合P的分布,KL散度越小,Q越接近于P。

在这里插入图片描述
 3. KL散度的特性:(1)分对称性:DKL(p||q) ≠ DKL(q||p),只有概率分布完全一样时才相等。(2)非负性:DKL(p||q)恒大于0,只有概率分布完全一样时才等于0。

 4. 一个简单的例子应用KL散度的公式:

在这里插入图片描述

2.2 交叉熵

 1. 交叉熵由来是有KL散度公式变形得到的,如下图所示:

在这里插入图片描述
 2. 交叉熵的主要应用:主要用于度量同一个随机变量X的预测分布Q和真实分布P之间的差距。

 3. 交叉熵的一般公式:

在这里插入图片描述
 4. 交叉熵的最简公式:
在这里插入图片描述

 5. 一个简单的例子应用交叉熵的公式:

在这里插入图片描述
 从上述例子得到的结论:(1)预测越准确,交叉熵越小。(2)交叉熵只跟真实标签的预测概率值有关。

 6. 交叉熵的二分类公式:

在这里插入图片描述
 7. 为什么在很多网络模型中,使用交叉熵作为损失函数,而不使用KL散度作为损失函数呢?我们来简单看一个例子直观理解一下:

在这里插入图片描述
 那总结是因为:交叉熵损失函数在数值稳定性、梯度计算效率和目标函数形式等方面具有优势,因此更常用于网络模型的训练。但在某些特定的任务或场景下,KL散度也可以作为损失函数使用。

三、Softmax和交叉熵损失函数

3.1 Softmax

 1. 定义:Softmax函数是一种常用的激活函数,它通常用于多分类任务中,将模型的输出转化为概率分布。Softmax函数将输入向量的每个元素进行指数运算,然后对所有元素求和,最后将每个元素除以求和结果,得到一个概率分布。

Soft是将数字转换为概率的神器,是将数据归一化的神器。

 2. Softmax的公式如下:

在这里插入图片描述
 3. 一个简单的例子应用Softmax的公式:

在这里插入图片描述

3.2 交叉熵损失函数

 1. 交叉熵损失函数公式:

在这里插入图片描述

注意:(1)因为有些输入是数值,需经过Softmax转换为概率,所以log括号里写的是Softmax公式。(2)标签中有个真实值肯定为1,其余为0,所以相当于交叉熵最简公式。

 2. 代码块举例:

import torch
import torch.nn as nn
#定义数据
torch.manual_seed(100) #设置随机种子,以保证结果的可重复性。
predict = torch.rand(4, 5)
label = torch.tensor([4, 3, 3, 2])
print(predict)
print(label)#定义交叉熵损失函数
criterion = nn.CrossEntropyLoss()#计算整体的损失值
loss = criterion(predict, label)
print(loss)#最后将这四个样本的损失值进行求平均,得到整体的损失值。#计算单个样本的损失值
one_loss = criterion(predict[0].unsqueeze(0), label[0].unsqueeze(0)) #.unsqueeze(0)是转二维向量
print(one_loss)

在这里插入图片描述

相关文章:

一篇文章彻底搞懂熵、信息熵、KL散度、交叉熵、Softmax和交叉熵损失函数

文章目录 一、熵和信息熵1.1 概念1.2 信息熵公式 二、KL散度和交叉熵2.1 KL散度(相对熵)2.2 交叉熵 三、Softmax和交叉熵损失函数3.1 Softmax3.2 交叉熵损失函数 一、熵和信息熵 1.1 概念 1. 熵是一个物理学概念,它表示一个系统的不确定性程度,或者说是…...

[架构之路-223]:数据管理能力成熟度评估模型DCMM简介

目录 一、背景 二、评估依据 三、评估内容 四、主要适用对象 五、能力等级 六、不同层次的文件: 一、背景 信息技术与经济社会的交汇融合引发了数据爆发式增长。数据蕴含着重要的价值,已成为国家基础性战略资源,正日益对全球生产、流通…...

十大排序算法的实现(C/C++)

以下是十大经典排序算法的简单 C 实现: 冒泡排序(Bubble Sort): 思想:重复地遍历要排序的列表,比较相邻的两个元素,如果它们的顺序错误就交换它们。时间复杂度:最坏情况和平均情况…...

HTML+CSS综合案例一新闻详情

<!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>新闻详情</title><style>h1{text-align…...

【Spring Boot】实战:实现Session共享

🌿欢迎来到@衍生星球的CSDN博文🌿 🍁本文主要学习实现Session共享 🍁 🌱我是衍生星球,一个从事集成开发的打工人🌱 ⭐️喜欢的朋友可以关注一下🫰🫰🫰,下次更新不迷路⭐️💠作为一名热衷于分享知识的程序员,我乐于在CSDN上与广大开发者交流学习。 💠我…...

3、Elasticsearch功能使用

第4章 功能使用 4.1 Java API 操作 随着 Elasticsearch 8.x 新版本的到来&#xff0c;Type 的概念被废除&#xff0c;为了适应这种数据结构的改 变&#xff0c;Elasticsearch 官方从 7.15 版本开始建议使用新的 Elasticsearch Java Client。 4.1.1 增加依赖关系 <propertie…...

数据链路层协议

文章目录 数据链路层协议0. 数据链路层解决的问题1. 以太网协议(1) 认识以太网(2) 以太网帧格式<1> 两个核心问题 (3) 认识MAC地址(4) 局域网通信原理(5) MTU<1> 认识MTU<2> MTU对IP协议的影响<3> MTU对UDP协议的影响<4> MTU对TCP协议的影响<…...

java版网页代码生成器系统myeclipse定制开发mysql数据库网页模式java编程jdbc生成无框架java web网页

一、源码特点 java版网页代码生成器系统是一套完善的web设计系统&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码&#xff0c;系统主要采用B/S模式开发。开发环境为 TOMCAT7.0,Myeclipse8.5开发&#xff0c;数据库为Mysql5.0&#xff0c;使…...

ElementUI实现登录注册啊,axios全局配置,CORS跨域

一&#xff0c;项目搭建 认识ElementUI ElementUI是一个基于Vue.js 2.0的桌面端组件库&#xff0c;它提供了一套丰富的UI组件&#xff0c;包括表格、表单、弹框、按钮、菜单等常用组件&#xff0c;具备易用、美观、高效、灵活等优势&#xff0c;能够极大的提高Web应用的开发效…...

面经分享 | 某康安全开发工程师

本文由掌控安全学院 - sbhglqy 投稿 一、反射型XSS跟DOM型XSS的最大区别 DOM型xss和别的xss最大的区别就是它不经过服务器&#xff0c;仅仅是通过网页本身的JavaScript进行渲染触发的。 二、Oracle数据库了解多吗 平常用的多的是MySQL数据库&#xff0c;像Oracle数据库也有…...

leetcode - 389. Find the Difference

Description You are given two strings s and t. String t is generated by random shuffling string s and then add one more letter at a random position. Return the letter that was added to t. Example 1: Input: s “abcd”, t “abcde” Output: “e” Expla…...

asp.net企业生产管理系统VS开发sqlserver数据库web结构c#编程Microsoft Visual Studio

一、源码特点 asp.net 企业生产管理系统 是一套完善的web设计管理系统&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。开发环境为vs2010&#xff0c;数据库为sqlserver2008&#xff0c;使用c#语 言开发 二、功能介绍 (1)用户管理&…...

vue中或者react中的excel导入和导出

excel导入和导出是后台管理系统常见的功能。 当我们把信息化系统给用户使用时&#xff0c;用户经常需要把以前在excel里录入的数据导入的信息化系统里&#xff0c;这样为用户提供了很大的方便。 在用户使用信息化系统时&#xff0c;也需要把网页表格里的数据导出到excel里&…...

如何在Ubuntu的根目录下创建删除目录

首先进入根目录 cd /创建目录 sudo mkdir xxx然后可以用ls命令查看是否创建成功 我们创建了一个666的目录&#xff0c;接下来我们应该怎么删除呢&#xff1f; 删除 如果我们用普通删除的话&#xff0c;例如 rm 666 你会发现根本删除不掉&#xff1b;这时我们还是得用超级权…...

lv5 嵌入式开发-6 线程的取消和互斥

目录 1 线程通信 – 互斥 2 互斥锁初始化 – pthread_mutex_init 3 互斥锁销毁 pthread_mutex_destroy 4 申请锁 – pthread_mutex_lock 5 释放锁 – pthread_mutex_unlock 6 读写锁 7 死锁的避免 8 条件变量&#xff08;信号量&#xff09; 9 线程池概念和实现 9.1 …...

el-table实现穿梭功能

第一种 <template><el-row :gutter"20"><el-col :span"10"><!-- 搜索 --><div class"search-bg"><YcSearchInput title"手机号" v-model"search.phone" /><div class"search-s…...

Cron表达式_用于定时调度任务

一、Cron表达式简介 Cron表达式是一个用于设置计划任务的字符串&#xff0c;该字符串以5或6个空格分隔&#xff0c;分为6或7个域&#xff0c;每一个域代表任务在相应时间、日期或时间间隔执行的规则【Cron表达式最初是在类Unix操作中系统中使用的&#xff0c;但现在已经广泛应用…...

CeresPCL ICP精配准(点到面)

文章目录 一、简介二、实现代码三、实现效果参考资料一、简介 ICP算法总共分为6个阶段,如下图所示: (1)挑选发生重叠的点云子集,这一步如果原始点云数据量比较巨大,一般会对原始点云进行下采样操作。 (2)匹配特征点。通常是距离最近的两个点,当然这需要视评判的准则而…...

CentOS安装kafka单机部署

一&#xff1a;保证机器上已经运行的有Java环境 服务器&#xff1a;centos7 kafka版本&#xff1a;3.5.1 二&#xff1a;下载kafka压缩包 下载地址 1.解压kafka压缩包 tar -zxvf kafka_2.13-3.5.1.tgz 2.我得是上传到了 /home目录下&#xff0c;配置文件server.propertie…...

蓝牙核心规范(V5.4)11.2-LE Audio 笔记之LE Auido架构

专栏汇总网址&#xff1a;蓝牙篇之蓝牙核心规范学习笔记&#xff08;V5.4&#xff09;汇总_蓝牙核心规范中文版_心跳包的博客-CSDN博客 爬虫网站无德&#xff0c;任何非CSDN看到的这篇文章都是盗版网站&#xff0c;你也看不全。认准原始网址。&#xff01;&#xff01;&#x…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写&#xff0c;中文译为后进先出。这是一种数据结构的工作原则&#xff0c;类似于一摞盘子或一叠书本&#xff1a; 最后放进去的元素最先出来 -想象往筒状容器里放盘子&#xff1a; &#xff08;1&#xff09;你放进的最后一个盘子&#xff08…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统&#xff0c;智慧工地全套源码&#xff0c;java版智慧工地源码&#xff0c;支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求&#xff0c;提供“平台网络终端”的整体解决方案&#xff0c;提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

pam_env.so模块配置解析

在PAM&#xff08;Pluggable Authentication Modules&#xff09;配置中&#xff0c; /etc/pam.d/su 文件相关配置含义如下&#xff1a; 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块&#xff0c;负责验证用户身份&am…...

JDK 17 新特性

#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持&#xff0c;不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的&#xff…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

C++使用 new 来创建动态数组

问题&#xff1a; 不能使用变量定义数组大小 原因&#xff1a; 这是因为数组在内存中是连续存储的&#xff0c;编译器需要在编译阶段就确定数组的大小&#xff0c;以便正确地分配内存空间。如果允许使用变量来定义数组的大小&#xff0c;那么编译器就无法在编译时确定数组的大…...

在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南

在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南 背景介绍完整操作步骤1. 创建Docker容器环境2. 验证GUI显示功能3. 安装ROS Noetic4. 配置环境变量5. 创建ROS节点(小球运动模拟)6. 配置RVIZ默认视图7. 创建启动脚本8. 运行可视化系统效果展示与交互技术解析ROS节点通…...

数据库正常,但后端收不到数据原因及解决

从代码和日志来看&#xff0c;后端SQL查询确实返回了数据&#xff0c;但最终user对象却为null。这表明查询结果没有正确映射到User对象上。 在前后端分离&#xff0c;并且ai辅助开发的时候&#xff0c;很容易出现前后端变量名不一致情况&#xff0c;还不报错&#xff0c;只是单…...

Xcode 16 集成 cocoapods 报错

基于 Xcode 16 新建工程项目&#xff0c;集成 cocoapods 执行 pod init 报错 ### Error RuntimeError - PBXGroup attempted to initialize an object with unknown ISA PBXFileSystemSynchronizedRootGroup from attributes: {"isa">"PBXFileSystemSynchro…...

【题解-洛谷】P10480 可达性统计

题目&#xff1a;P10480 可达性统计 题目描述 给定一张 N N N 个点 M M M 条边的有向无环图&#xff0c;分别统计从每个点出发能够到达的点的数量。 输入格式 第一行两个整数 N , M N,M N,M&#xff0c;接下来 M M M 行每行两个整数 x , y x,y x,y&#xff0c;表示从 …...