当前位置: 首页 > news >正文

【残差网络ResNet:残差块输入输出形状控制】

【残差网络ResNet:残差块输入输出形状控制】

  • 1 残差块输入输出形状控制程序
  • 2 查看经典的ResNet18模型

1 残差块输入输出形状控制程序

在这里插入图片描述
参考链接:https://arxiv.org/pdf/1512.03385.pdf
这是一个基本的残差块,由两层卷积组成前向传播 + 一层卷积和批归一化与组成,为了与两层卷积组成前向传播的形状一致,一层卷积和批归一化用来控制输出的形状,最终相加形成新的与前向传播一致的形状

class ResNetBasicBlock(nn.Module):def __init__(self, in_channels, out_channels, stride):super().__init__()self.conv1 = nn.Conv2d(in_channels, out_channels,kernel_size=3, stride=stride, padding=1, bias=False)self.bn1 = nn.BatchNorm2d(out_channels)self.conv2 = nn.Conv2d(out_channels, out_channels,kernel_size=3, stride=stride, padding=1, bias=False)self.bn2 = nn.BatchNorm2d(out_channels)self.residual = nn.Conv2d(in_channels, out_channels,kernel_size=3, stride=stride, padding=1, bias=False)self.bn3 = nn.BatchNorm2d(out_channels)def forward(self, x):out = self.conv1(x)out = F.relu(self.bn1(out),inplace=True)out = self.conv2(out)out = self.bn2(out)res = self.residual(x)res = self.bn3(res)out += res                 # 直连return F.relu(out)

测试代码如下:

imgs_batch = torch.randn((8, 3, 224, 244))
resnet_block = ResNetBasicBlock(3, 16, 1)
pred_batch = resnet_block(imgs_batch)
print(pred_batch.shape)

输出如下:

torch.Size([8, 16, 224, 244])

使用tensorboard观察结构图代码:

from torch.utils.tensorboard import SummaryWriterwriter = SummaryWriter('my_log/ResNetBasicBlock')
writer.add_graph(resnet_block, imgs_batch)
# 在promote中输入tensorboard --logdir path --host=127.0.0.1 ,path为绝对路径不加双引号,按照提示打开tensorboard

在这里插入图片描述

2 查看经典的ResNet18模型

resnet_model = torchvision.models.resnet18(pretrained=False)
print(resnet_model)

输出如下:

ResNet((conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)(layer1): Sequential((0): BasicBlock((conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(1): BasicBlock((conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(layer2): Sequential((0): BasicBlock((conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(downsample): Sequential((0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): BasicBlock((conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(layer3): Sequential((0): BasicBlock((conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(downsample): Sequential((0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): BasicBlock((conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(layer4): Sequential((0): BasicBlock((conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(downsample): Sequential((0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): BasicBlock((conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(avgpool): AdaptiveAvgPool2d(output_size=(1, 1))(fc): Linear(in_features=512, out_features=1000, bias=True)
)

相关文章:

【残差网络ResNet:残差块输入输出形状控制】

【残差网络ResNet:残差块输入输出形状控制】 1 残差块输入输出形状控制程序2 查看经典的ResNet18模型 1 残差块输入输出形状控制程序 参考链接:https://arxiv.org/pdf/1512.03385.pdf 这是一个基本的残差块,由两层卷积组成前向传播 一层卷积…...

【编译和链接——详解】

1. 翻译环境和运行环境💻 在ANSI C的任何⼀种实现中,存在两个不同的环境。 第1种是翻译环境,在这个环境中源代码被转换为可执⾏的机器指令。 第2种是执⾏环境,它⽤于实际执⾏代码。 2. 翻译环境💻 那翻译环境是怎么将…...

【python爬虫】爬虫所需要的爬虫代理ip是什么?

目录 前言 一、什么是爬虫代理 IP 二、代理 IP 的分类 1.透明代理 2.匿名代理 3.高匿代理 三、如何获取代理 IP 1.免费代理网站 2.付费代理服务 四、如何使用代理 IP 1.使用 requests 库 2.使用 scrapy 库 五、代理 IP 的注意事项 1.代理 IP 可能存在不稳定性 2…...

酒店预订小程序制作详细步骤解析

" 随着移动设备的普及和互联网技术的不断发展,小程序成为了一个备受关注的应用领域。特别是在酒店预订行业,小程序可以为酒店带来更多的客源和方便快捷的预订服务。下面是酒店预订小程序的制作详细步骤解析。 第一步:注册登录【乔拓云】…...

Intel汇编语言程序设计(第7版)第六章编程学习过程中写的小例子

1. 根据书上的例子, 自己写的4个过程, 改了一部分 include irvine32.inc includelib irvine32.lib include msvcrt.inc includelib msvcrt.lib.data dwNum0 DWORD 15 dwNum1 DWORD 21PDWORD TYPEDEF PTR DWORD dwNumAry DWORD 25, 39, 14, 59 NumAryLen DWORD LENGTHOF dwNum…...

ElementUI之动态树+数据表格+分页

目录 一、动态树 1.1 定义 1.2 导航菜单绑定 1.3 面板内容 1.4 效果展示 二、动态表格 2.1 定义 2.2 搜索框 2.3 数据表格 2.4 分页条 2.5 功能实现 一、动态树 1.1 定义 动态树通常是指在网页或应用程序中创建可展开和折叠的树形结构,其中树的节点是动…...

ReferenceError: primordials is not defined错误解决

问题场景: 从github上拉了一个项目,想要学习一下,在起服务的时候出现了这个问题。 造成的原因: gulp 与 node 版本起冲突。 1)首先,安装 gulp,查看版本; npm install gulp -g g…...

【Element-UI】实现动态树、数据表格及分页效果

一、导言 1、引言 在现代软件开发中,动态树、数据表格以及分页效果成为了许多应用的核心需求。随着业务规模和复杂性的增加,我们往往需要展示大量的层级结构数据,并且实现交互性强且高效的操作。 动态树提供了一种组织结构清晰、可伸缩的展示…...

解决仪器掉线备忘

网络管控越来越严格,老的Mac模式连接的仪器经常断开,要么是网络没活动被断开TCP了,要么是网络波动无法保持TCP。每次重启仪器控制很麻烦,基于之前用M写http服务的基础上改进仪器接口连接。 参照之前实现http服务的逻辑 最终逻辑 …...

Java面向对象高级

文章目录 面向对象高级Object类的常用方法常用方法一(面向对象阶段)** 和 equals 的区别** 关键字native**单例设计模式(Singleton)**前情回顾(学习基础)静态修饰符Static设计模式概念开发步骤**两种实现方…...

渗透测试信息收集方法和工具分享

文章目录 一、域名收集1.OneForAll2.子域名挖掘机3.subdomainsBurte4.ssl证书查询 二、获取真实ip1.17CE2.站长之家ping检测3.如何寻找真实IP4.纯真ip数据库工具5.c段,旁站查询 三、端口扫描1.端口扫描站长工具2.masscan(全端口扫描)nmap扫描3.scanport4.端口表5.利…...

Unity打包出来的APK文件有问题总结

一、Unity打包出来的APK文件安装失败,提示安装失败(-108),或者是提示“包含病毒:a.gray.Bulimia.b” 有可能是遇到如上图所示的问题,提示安装失败(-108)。 有可能是遇到如上图所示的…...

记录:移动设备软件开发(Activity的显式启动和隐式启动)

目录 Intent对象简述Intent的作用Intent开启Activtiy显式启动Activity隐式启动Activity Intent对象简述 Android的应用程序包含三种重要组件:Activity、Service、BroadcastReceiver,应用程序采用了一致的方式来启动它们——都是依靠Intent来启动的&…...

面试题库(十一):MQ和分布式事务

MQ mq 通知时,消费者没消费到怎么办简单聊聊消息中间件?你了解那些具体的消息中间件产品?mq的消费端是怎么处理的? 整理一下你的消费端的整个处理逻辑流程,然后说说你的ack是在哪里返回的。按照你这样画的话,如果数据库突然宕机,你的消息该怎么确认已经接收? 那如果发送…...

Linux日期和时间管理指南:日期、时间、时区、定时任务和时间同步

文章目录 Linux日期和时间管理指南1. 简介1.1 Linux 日期和时间的重要性1.2 日期管理的需求 2. 查看当前日期和时间2.1 date 命令2.2 cal 命令2.3 查看硬件时钟 3. 设置系统日期和时间3.1 设置日期3.2 设置时间3.3 设置硬件时钟 4. 时区管理4.1 查看当前时区4.2 修改系统时区4.…...

tsar-性能监控工具

简介 tsar是淘宝自己开发的一个采集工具,主要用来收集服务器的系统信息(如cpu,io,mem,tcp等),以及应用数据(如squid haproxy nginx等)。收集到的数据存储在磁盘上&#…...

【Linux】系统编程简单线程池(C++)

目录 【1】线程池概念 【1.1】线程池 【1.2】线程池的应用场景 【1.3】线程池的种类 【1.4】线程池示例 【2】线程池代码 【1】线程池概念 【1.1】线程池 一种线程使用模式。线程过多会带来调度开销,进而影响缓存局部性和整体性能。而线程池维护着多个线程&a…...

数据结构之道:如何选择适合你的数据存储

文章目录 第1节:数据结构的基本原理1.1 时间复杂度和空间复杂度1.2 数据的访问方式1.3 数据的增删操作 第2节:常见的数据结构2.1 数组(Array)2.2 链表(Linked List)2.3 栈(Stack)2.4…...

MySQL定时删除XX天数据

写在前面 定时删除数据方式有多种方法,在实际工作中很多人可能会通过编码实现,也有人可能会通过脚本定时执行SQL进行定时删除对应数据。 今天使用MySQL自带的删除策略。 MYSQL删除策略 从MySQL5.1.6起,增加了一个非常有特色的功能–事件调…...

vue在js文件中调用$notify

我们在vue组件中可以直接 this.$notify({title: 修改成功,type: success,duration: 2500 })但在js中 我们this的指向就会发生一些不同 但是 其实 学过构造函数和原型链的人会很好理解这一点 每一个vue组件都是通过 vue构造出来的一个实例 所以 他们的this都是指向当前实例对象…...

SpringBoot-17-MyBatis动态SQL标签之常用标签

文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘

美国西海岸的夏天,再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至,这不仅是开发者的盛宴,更是全球数亿苹果用户翘首以盼的科技春晚。今年,苹果依旧为我们带来了全家桶式的系统更新,包括 iOS 26、iPadOS 26…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...

页面渲染流程与性能优化

页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...

MySQL中【正则表达式】用法

MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...

【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统

目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索(基于物理空间 广播范围)2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...

代理篇12|深入理解 Vite中的Proxy接口代理配置

在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...

USB Over IP专用硬件的5个特点

USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中,从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备(如专用硬件设备),从而消除了直接物理连接的需要。USB over IP的…...

Golang——9、反射和文件操作

反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一:使用Read()读取文件2.3、方式二:bufio读取文件2.4、方式三:os.ReadFile读取2.5、写…...

WebRTC从入门到实践 - 零基础教程

WebRTC从入门到实践 - 零基础教程 目录 WebRTC简介 基础概念 工作原理 开发环境搭建 基础实践 三个实战案例 常见问题解答 1. WebRTC简介 1.1 什么是WebRTC? WebRTC(Web Real-Time Communication)是一个支持网页浏览器进行实时语音…...