【残差网络ResNet:残差块输入输出形状控制】
【残差网络ResNet:残差块输入输出形状控制】
- 1 残差块输入输出形状控制程序
- 2 查看经典的ResNet18模型
1 残差块输入输出形状控制程序

参考链接:https://arxiv.org/pdf/1512.03385.pdf
这是一个基本的残差块,由两层卷积组成前向传播 + 一层卷积和批归一化与组成,为了与两层卷积组成前向传播的形状一致,一层卷积和批归一化用来控制输出的形状,最终相加形成新的与前向传播一致的形状
class ResNetBasicBlock(nn.Module):def __init__(self, in_channels, out_channels, stride):super().__init__()self.conv1 = nn.Conv2d(in_channels, out_channels,kernel_size=3, stride=stride, padding=1, bias=False)self.bn1 = nn.BatchNorm2d(out_channels)self.conv2 = nn.Conv2d(out_channels, out_channels,kernel_size=3, stride=stride, padding=1, bias=False)self.bn2 = nn.BatchNorm2d(out_channels)self.residual = nn.Conv2d(in_channels, out_channels,kernel_size=3, stride=stride, padding=1, bias=False)self.bn3 = nn.BatchNorm2d(out_channels)def forward(self, x):out = self.conv1(x)out = F.relu(self.bn1(out),inplace=True)out = self.conv2(out)out = self.bn2(out)res = self.residual(x)res = self.bn3(res)out += res # 直连return F.relu(out)
测试代码如下:
imgs_batch = torch.randn((8, 3, 224, 244))
resnet_block = ResNetBasicBlock(3, 16, 1)
pred_batch = resnet_block(imgs_batch)
print(pred_batch.shape)
输出如下:
torch.Size([8, 16, 224, 244])
使用tensorboard观察结构图代码:
from torch.utils.tensorboard import SummaryWriterwriter = SummaryWriter('my_log/ResNetBasicBlock')
writer.add_graph(resnet_block, imgs_batch)
# 在promote中输入tensorboard --logdir path --host=127.0.0.1 ,path为绝对路径不加双引号,按照提示打开tensorboard

2 查看经典的ResNet18模型
resnet_model = torchvision.models.resnet18(pretrained=False)
print(resnet_model)
输出如下:
ResNet((conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)(layer1): Sequential((0): BasicBlock((conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(1): BasicBlock((conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(layer2): Sequential((0): BasicBlock((conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(downsample): Sequential((0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): BasicBlock((conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(layer3): Sequential((0): BasicBlock((conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(downsample): Sequential((0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): BasicBlock((conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(layer4): Sequential((0): BasicBlock((conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(downsample): Sequential((0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): BasicBlock((conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(avgpool): AdaptiveAvgPool2d(output_size=(1, 1))(fc): Linear(in_features=512, out_features=1000, bias=True)
)相关文章:
【残差网络ResNet:残差块输入输出形状控制】
【残差网络ResNet:残差块输入输出形状控制】 1 残差块输入输出形状控制程序2 查看经典的ResNet18模型 1 残差块输入输出形状控制程序 参考链接:https://arxiv.org/pdf/1512.03385.pdf 这是一个基本的残差块,由两层卷积组成前向传播 一层卷积…...
【编译和链接——详解】
1. 翻译环境和运行环境💻 在ANSI C的任何⼀种实现中,存在两个不同的环境。 第1种是翻译环境,在这个环境中源代码被转换为可执⾏的机器指令。 第2种是执⾏环境,它⽤于实际执⾏代码。 2. 翻译环境💻 那翻译环境是怎么将…...
【python爬虫】爬虫所需要的爬虫代理ip是什么?
目录 前言 一、什么是爬虫代理 IP 二、代理 IP 的分类 1.透明代理 2.匿名代理 3.高匿代理 三、如何获取代理 IP 1.免费代理网站 2.付费代理服务 四、如何使用代理 IP 1.使用 requests 库 2.使用 scrapy 库 五、代理 IP 的注意事项 1.代理 IP 可能存在不稳定性 2…...
酒店预订小程序制作详细步骤解析
" 随着移动设备的普及和互联网技术的不断发展,小程序成为了一个备受关注的应用领域。特别是在酒店预订行业,小程序可以为酒店带来更多的客源和方便快捷的预订服务。下面是酒店预订小程序的制作详细步骤解析。 第一步:注册登录【乔拓云】…...
Intel汇编语言程序设计(第7版)第六章编程学习过程中写的小例子
1. 根据书上的例子, 自己写的4个过程, 改了一部分 include irvine32.inc includelib irvine32.lib include msvcrt.inc includelib msvcrt.lib.data dwNum0 DWORD 15 dwNum1 DWORD 21PDWORD TYPEDEF PTR DWORD dwNumAry DWORD 25, 39, 14, 59 NumAryLen DWORD LENGTHOF dwNum…...
ElementUI之动态树+数据表格+分页
目录 一、动态树 1.1 定义 1.2 导航菜单绑定 1.3 面板内容 1.4 效果展示 二、动态表格 2.1 定义 2.2 搜索框 2.3 数据表格 2.4 分页条 2.5 功能实现 一、动态树 1.1 定义 动态树通常是指在网页或应用程序中创建可展开和折叠的树形结构,其中树的节点是动…...
ReferenceError: primordials is not defined错误解决
问题场景: 从github上拉了一个项目,想要学习一下,在起服务的时候出现了这个问题。 造成的原因: gulp 与 node 版本起冲突。 1)首先,安装 gulp,查看版本; npm install gulp -g g…...
【Element-UI】实现动态树、数据表格及分页效果
一、导言 1、引言 在现代软件开发中,动态树、数据表格以及分页效果成为了许多应用的核心需求。随着业务规模和复杂性的增加,我们往往需要展示大量的层级结构数据,并且实现交互性强且高效的操作。 动态树提供了一种组织结构清晰、可伸缩的展示…...
解决仪器掉线备忘
网络管控越来越严格,老的Mac模式连接的仪器经常断开,要么是网络没活动被断开TCP了,要么是网络波动无法保持TCP。每次重启仪器控制很麻烦,基于之前用M写http服务的基础上改进仪器接口连接。 参照之前实现http服务的逻辑 最终逻辑 …...
Java面向对象高级
文章目录 面向对象高级Object类的常用方法常用方法一(面向对象阶段)** 和 equals 的区别** 关键字native**单例设计模式(Singleton)**前情回顾(学习基础)静态修饰符Static设计模式概念开发步骤**两种实现方…...
渗透测试信息收集方法和工具分享
文章目录 一、域名收集1.OneForAll2.子域名挖掘机3.subdomainsBurte4.ssl证书查询 二、获取真实ip1.17CE2.站长之家ping检测3.如何寻找真实IP4.纯真ip数据库工具5.c段,旁站查询 三、端口扫描1.端口扫描站长工具2.masscan(全端口扫描)nmap扫描3.scanport4.端口表5.利…...
Unity打包出来的APK文件有问题总结
一、Unity打包出来的APK文件安装失败,提示安装失败(-108),或者是提示“包含病毒:a.gray.Bulimia.b” 有可能是遇到如上图所示的问题,提示安装失败(-108)。 有可能是遇到如上图所示的…...
记录:移动设备软件开发(Activity的显式启动和隐式启动)
目录 Intent对象简述Intent的作用Intent开启Activtiy显式启动Activity隐式启动Activity Intent对象简述 Android的应用程序包含三种重要组件:Activity、Service、BroadcastReceiver,应用程序采用了一致的方式来启动它们——都是依靠Intent来启动的&…...
面试题库(十一):MQ和分布式事务
MQ mq 通知时,消费者没消费到怎么办简单聊聊消息中间件?你了解那些具体的消息中间件产品?mq的消费端是怎么处理的? 整理一下你的消费端的整个处理逻辑流程,然后说说你的ack是在哪里返回的。按照你这样画的话,如果数据库突然宕机,你的消息该怎么确认已经接收? 那如果发送…...
Linux日期和时间管理指南:日期、时间、时区、定时任务和时间同步
文章目录 Linux日期和时间管理指南1. 简介1.1 Linux 日期和时间的重要性1.2 日期管理的需求 2. 查看当前日期和时间2.1 date 命令2.2 cal 命令2.3 查看硬件时钟 3. 设置系统日期和时间3.1 设置日期3.2 设置时间3.3 设置硬件时钟 4. 时区管理4.1 查看当前时区4.2 修改系统时区4.…...
tsar-性能监控工具
简介 tsar是淘宝自己开发的一个采集工具,主要用来收集服务器的系统信息(如cpu,io,mem,tcp等),以及应用数据(如squid haproxy nginx等)。收集到的数据存储在磁盘上&#…...
【Linux】系统编程简单线程池(C++)
目录 【1】线程池概念 【1.1】线程池 【1.2】线程池的应用场景 【1.3】线程池的种类 【1.4】线程池示例 【2】线程池代码 【1】线程池概念 【1.1】线程池 一种线程使用模式。线程过多会带来调度开销,进而影响缓存局部性和整体性能。而线程池维护着多个线程&a…...
数据结构之道:如何选择适合你的数据存储
文章目录 第1节:数据结构的基本原理1.1 时间复杂度和空间复杂度1.2 数据的访问方式1.3 数据的增删操作 第2节:常见的数据结构2.1 数组(Array)2.2 链表(Linked List)2.3 栈(Stack)2.4…...
MySQL定时删除XX天数据
写在前面 定时删除数据方式有多种方法,在实际工作中很多人可能会通过编码实现,也有人可能会通过脚本定时执行SQL进行定时删除对应数据。 今天使用MySQL自带的删除策略。 MYSQL删除策略 从MySQL5.1.6起,增加了一个非常有特色的功能–事件调…...
vue在js文件中调用$notify
我们在vue组件中可以直接 this.$notify({title: 修改成功,type: success,duration: 2500 })但在js中 我们this的指向就会发生一些不同 但是 其实 学过构造函数和原型链的人会很好理解这一点 每一个vue组件都是通过 vue构造出来的一个实例 所以 他们的this都是指向当前实例对象…...
java 实现excel文件转pdf | 无水印 | 无限制
文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...
Go 语言接口详解
Go 语言接口详解 核心概念 接口定义 在 Go 语言中,接口是一种抽象类型,它定义了一组方法的集合: // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的: // 矩形结构体…...
JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...
Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)
在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马(服务器方面的)的原理,连接,以及各种木马及连接工具的分享 文件木马:https://w…...
C# 表达式和运算符(求值顺序)
求值顺序 表达式可以由许多嵌套的子表达式构成。子表达式的求值顺序可以使表达式的最终值发生 变化。 例如,已知表达式3*52,依照子表达式的求值顺序,有两种可能的结果,如图9-3所示。 如果乘法先执行,结果是17。如果5…...
BLEU评分:机器翻译质量评估的黄金标准
BLEU评分:机器翻译质量评估的黄金标准 1. 引言 在自然语言处理(NLP)领域,衡量一个机器翻译模型的性能至关重要。BLEU (Bilingual Evaluation Understudy) 作为一种自动化评估指标,自2002年由IBM的Kishore Papineni等人提出以来,…...
android RelativeLayout布局
<?xml version"1.0" encoding"utf-8"?> <RelativeLayout xmlns:android"http://schemas.android.com/apk/res/android"android:layout_width"match_parent"android:layout_height"match_parent"android:gravity&…...
Kafka主题运维全指南:从基础配置到故障处理
#作者:张桐瑞 文章目录 主题日常管理1. 修改主题分区。2. 修改主题级别参数。3. 变更副本数。4. 修改主题限速。5.主题分区迁移。6. 常见主题错误处理常见错误1:主题删除失败。常见错误2:__consumer_offsets占用太多的磁盘。 主题日常管理 …...
边缘计算网关提升水产养殖尾水处理的远程运维效率
一、项目背景 随着水产养殖行业的快速发展,养殖尾水的处理成为了一个亟待解决的环保问题。传统的尾水处理方式不仅效率低下,而且难以实现精准监控和管理。为了提升尾水处理的效果和效率,同时降低人力成本,某大型水产养殖企业决定…...
13.10 LangGraph多轮对话系统实战:Ollama私有部署+情感识别优化全解析
LangGraph多轮对话系统实战:Ollama私有部署+情感识别优化全解析 LanguageMentor 对话式训练系统架构与实现 关键词:多轮对话系统设计、场景化提示工程、情感识别优化、LangGraph 状态管理、Ollama 私有化部署 1. 对话训练系统技术架构 采用四层架构实现高扩展性的对话训练…...
