当前位置: 首页 > news >正文

【残差网络ResNet:残差块输入输出形状控制】

【残差网络ResNet:残差块输入输出形状控制】

  • 1 残差块输入输出形状控制程序
  • 2 查看经典的ResNet18模型

1 残差块输入输出形状控制程序

在这里插入图片描述
参考链接:https://arxiv.org/pdf/1512.03385.pdf
这是一个基本的残差块,由两层卷积组成前向传播 + 一层卷积和批归一化与组成,为了与两层卷积组成前向传播的形状一致,一层卷积和批归一化用来控制输出的形状,最终相加形成新的与前向传播一致的形状

class ResNetBasicBlock(nn.Module):def __init__(self, in_channels, out_channels, stride):super().__init__()self.conv1 = nn.Conv2d(in_channels, out_channels,kernel_size=3, stride=stride, padding=1, bias=False)self.bn1 = nn.BatchNorm2d(out_channels)self.conv2 = nn.Conv2d(out_channels, out_channels,kernel_size=3, stride=stride, padding=1, bias=False)self.bn2 = nn.BatchNorm2d(out_channels)self.residual = nn.Conv2d(in_channels, out_channels,kernel_size=3, stride=stride, padding=1, bias=False)self.bn3 = nn.BatchNorm2d(out_channels)def forward(self, x):out = self.conv1(x)out = F.relu(self.bn1(out),inplace=True)out = self.conv2(out)out = self.bn2(out)res = self.residual(x)res = self.bn3(res)out += res                 # 直连return F.relu(out)

测试代码如下:

imgs_batch = torch.randn((8, 3, 224, 244))
resnet_block = ResNetBasicBlock(3, 16, 1)
pred_batch = resnet_block(imgs_batch)
print(pred_batch.shape)

输出如下:

torch.Size([8, 16, 224, 244])

使用tensorboard观察结构图代码:

from torch.utils.tensorboard import SummaryWriterwriter = SummaryWriter('my_log/ResNetBasicBlock')
writer.add_graph(resnet_block, imgs_batch)
# 在promote中输入tensorboard --logdir path --host=127.0.0.1 ,path为绝对路径不加双引号,按照提示打开tensorboard

在这里插入图片描述

2 查看经典的ResNet18模型

resnet_model = torchvision.models.resnet18(pretrained=False)
print(resnet_model)

输出如下:

ResNet((conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)(layer1): Sequential((0): BasicBlock((conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(1): BasicBlock((conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(layer2): Sequential((0): BasicBlock((conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(downsample): Sequential((0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): BasicBlock((conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(layer3): Sequential((0): BasicBlock((conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(downsample): Sequential((0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): BasicBlock((conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(layer4): Sequential((0): BasicBlock((conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(downsample): Sequential((0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): BasicBlock((conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(avgpool): AdaptiveAvgPool2d(output_size=(1, 1))(fc): Linear(in_features=512, out_features=1000, bias=True)
)

相关文章:

【残差网络ResNet:残差块输入输出形状控制】

【残差网络ResNet:残差块输入输出形状控制】 1 残差块输入输出形状控制程序2 查看经典的ResNet18模型 1 残差块输入输出形状控制程序 参考链接:https://arxiv.org/pdf/1512.03385.pdf 这是一个基本的残差块,由两层卷积组成前向传播 一层卷积…...

【编译和链接——详解】

1. 翻译环境和运行环境💻 在ANSI C的任何⼀种实现中,存在两个不同的环境。 第1种是翻译环境,在这个环境中源代码被转换为可执⾏的机器指令。 第2种是执⾏环境,它⽤于实际执⾏代码。 2. 翻译环境💻 那翻译环境是怎么将…...

【python爬虫】爬虫所需要的爬虫代理ip是什么?

目录 前言 一、什么是爬虫代理 IP 二、代理 IP 的分类 1.透明代理 2.匿名代理 3.高匿代理 三、如何获取代理 IP 1.免费代理网站 2.付费代理服务 四、如何使用代理 IP 1.使用 requests 库 2.使用 scrapy 库 五、代理 IP 的注意事项 1.代理 IP 可能存在不稳定性 2…...

酒店预订小程序制作详细步骤解析

" 随着移动设备的普及和互联网技术的不断发展,小程序成为了一个备受关注的应用领域。特别是在酒店预订行业,小程序可以为酒店带来更多的客源和方便快捷的预订服务。下面是酒店预订小程序的制作详细步骤解析。 第一步:注册登录【乔拓云】…...

Intel汇编语言程序设计(第7版)第六章编程学习过程中写的小例子

1. 根据书上的例子, 自己写的4个过程, 改了一部分 include irvine32.inc includelib irvine32.lib include msvcrt.inc includelib msvcrt.lib.data dwNum0 DWORD 15 dwNum1 DWORD 21PDWORD TYPEDEF PTR DWORD dwNumAry DWORD 25, 39, 14, 59 NumAryLen DWORD LENGTHOF dwNum…...

ElementUI之动态树+数据表格+分页

目录 一、动态树 1.1 定义 1.2 导航菜单绑定 1.3 面板内容 1.4 效果展示 二、动态表格 2.1 定义 2.2 搜索框 2.3 数据表格 2.4 分页条 2.5 功能实现 一、动态树 1.1 定义 动态树通常是指在网页或应用程序中创建可展开和折叠的树形结构,其中树的节点是动…...

ReferenceError: primordials is not defined错误解决

问题场景: 从github上拉了一个项目,想要学习一下,在起服务的时候出现了这个问题。 造成的原因: gulp 与 node 版本起冲突。 1)首先,安装 gulp,查看版本; npm install gulp -g g…...

【Element-UI】实现动态树、数据表格及分页效果

一、导言 1、引言 在现代软件开发中,动态树、数据表格以及分页效果成为了许多应用的核心需求。随着业务规模和复杂性的增加,我们往往需要展示大量的层级结构数据,并且实现交互性强且高效的操作。 动态树提供了一种组织结构清晰、可伸缩的展示…...

解决仪器掉线备忘

网络管控越来越严格,老的Mac模式连接的仪器经常断开,要么是网络没活动被断开TCP了,要么是网络波动无法保持TCP。每次重启仪器控制很麻烦,基于之前用M写http服务的基础上改进仪器接口连接。 参照之前实现http服务的逻辑 最终逻辑 …...

Java面向对象高级

文章目录 面向对象高级Object类的常用方法常用方法一(面向对象阶段)** 和 equals 的区别** 关键字native**单例设计模式(Singleton)**前情回顾(学习基础)静态修饰符Static设计模式概念开发步骤**两种实现方…...

渗透测试信息收集方法和工具分享

文章目录 一、域名收集1.OneForAll2.子域名挖掘机3.subdomainsBurte4.ssl证书查询 二、获取真实ip1.17CE2.站长之家ping检测3.如何寻找真实IP4.纯真ip数据库工具5.c段,旁站查询 三、端口扫描1.端口扫描站长工具2.masscan(全端口扫描)nmap扫描3.scanport4.端口表5.利…...

Unity打包出来的APK文件有问题总结

一、Unity打包出来的APK文件安装失败,提示安装失败(-108),或者是提示“包含病毒:a.gray.Bulimia.b” 有可能是遇到如上图所示的问题,提示安装失败(-108)。 有可能是遇到如上图所示的…...

记录:移动设备软件开发(Activity的显式启动和隐式启动)

目录 Intent对象简述Intent的作用Intent开启Activtiy显式启动Activity隐式启动Activity Intent对象简述 Android的应用程序包含三种重要组件:Activity、Service、BroadcastReceiver,应用程序采用了一致的方式来启动它们——都是依靠Intent来启动的&…...

面试题库(十一):MQ和分布式事务

MQ mq 通知时,消费者没消费到怎么办简单聊聊消息中间件?你了解那些具体的消息中间件产品?mq的消费端是怎么处理的? 整理一下你的消费端的整个处理逻辑流程,然后说说你的ack是在哪里返回的。按照你这样画的话,如果数据库突然宕机,你的消息该怎么确认已经接收? 那如果发送…...

Linux日期和时间管理指南:日期、时间、时区、定时任务和时间同步

文章目录 Linux日期和时间管理指南1. 简介1.1 Linux 日期和时间的重要性1.2 日期管理的需求 2. 查看当前日期和时间2.1 date 命令2.2 cal 命令2.3 查看硬件时钟 3. 设置系统日期和时间3.1 设置日期3.2 设置时间3.3 设置硬件时钟 4. 时区管理4.1 查看当前时区4.2 修改系统时区4.…...

tsar-性能监控工具

简介 tsar是淘宝自己开发的一个采集工具,主要用来收集服务器的系统信息(如cpu,io,mem,tcp等),以及应用数据(如squid haproxy nginx等)。收集到的数据存储在磁盘上&#…...

【Linux】系统编程简单线程池(C++)

目录 【1】线程池概念 【1.1】线程池 【1.2】线程池的应用场景 【1.3】线程池的种类 【1.4】线程池示例 【2】线程池代码 【1】线程池概念 【1.1】线程池 一种线程使用模式。线程过多会带来调度开销,进而影响缓存局部性和整体性能。而线程池维护着多个线程&a…...

数据结构之道:如何选择适合你的数据存储

文章目录 第1节:数据结构的基本原理1.1 时间复杂度和空间复杂度1.2 数据的访问方式1.3 数据的增删操作 第2节:常见的数据结构2.1 数组(Array)2.2 链表(Linked List)2.3 栈(Stack)2.4…...

MySQL定时删除XX天数据

写在前面 定时删除数据方式有多种方法,在实际工作中很多人可能会通过编码实现,也有人可能会通过脚本定时执行SQL进行定时删除对应数据。 今天使用MySQL自带的删除策略。 MYSQL删除策略 从MySQL5.1.6起,增加了一个非常有特色的功能–事件调…...

vue在js文件中调用$notify

我们在vue组件中可以直接 this.$notify({title: 修改成功,type: success,duration: 2500 })但在js中 我们this的指向就会发生一些不同 但是 其实 学过构造函数和原型链的人会很好理解这一点 每一个vue组件都是通过 vue构造出来的一个实例 所以 他们的this都是指向当前实例对象…...

label-studio的使用教程(导入本地路径)

文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

python打卡day49

知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

Zustand 状态管理库:极简而强大的解决方案

Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器

——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的​​一体化测试平台​​,覆盖应用全生命周期测试需求,主要提供五大核心能力: ​​测试类型​​​​检测目标​​​​关键指标​​功能体验基…...

c++ 面试题(1)-----深度优先搜索(DFS)实现

操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力

引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互

引擎版本: 3.8.1 语言: JavaScript/TypeScript、C、Java 环境:Window 参考:Java原生反射机制 您好,我是鹤九日! 回顾 在上篇文章中:CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...

EtherNet/IP转DeviceNet协议网关详解

一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...

Python Ovito统计金刚石结构数量

大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...

深度学习水论文:mamba+图像增强

🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...