【红外与可见光图像融合】离散平稳小波变换域中基于离散余弦变换和局部空间频率的红外与视觉图像融合方法(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
📚2 运行结果
🎉3 参考文献
🌈4 Matlab代码及文献
💥1 概述
基于SWT_DCT_SF的红外与可见光图像融合方法是一种通过结合离散稳态小波变换(DSWT)、离散余弦变换(DCT)和局部空间频率(LSF)来混合融合红外和可见光图像的方法。
为了提高红外和视觉图像融合的性能,并提供更好的视觉效果,本文提出了一种新的融合方法。该方法首先利用DSWT将源图像的重要特征分解为一系列不同层次和空间频率的子图像。这样做的目的是为了捕捉图像的细节和结构信息。接下来,利用DCT根据不同频率的能量分离子图像的重要细节。DCT能够有效地提取图像的频域特征,从而使得融合后的图像更加清晰和自然。最后,应用LSF增强DCT系数的区域特征,以帮助图像特征的提取和融合。LSF可以提供更多的空间信息,从而提高融合效果。
为了评估所提方法的有效性,我们使用了一些常用的图像融合方法和评价指标进行了实验。实验结果表明,所提方法能够达到较好的融合效果,比其他常规图像融合方法更有效。通过将红外和可见光图像的特征进行合理的融合,我们可以获得更全面和准确的图像信息,从而提高图像的识别和分析能力。这对于许多应用领域,如军事、安防和医学图像处理等具有重要的意义。
总之,基于SWT_DCT_SF的红外与可见光图像融合方法是一种有效的融合方法,能够提高红外和可见光图像的融合效果,并提供更好的视觉效果。这种方法可以应用于各种图像处理领域,为相关应用提供更全面和准确的图像信息。
📚2 运行结果







部分代码:
function imf=swt_dct2(M1,M2)[m,n]=size(M1);
bs=4;
for i=1:bs:mfor j=1:bs:ncb1 = M1(i:i+bs-1,j:j+bs-1);cb2 = M2(i:i+bs-1,j:j+bs-1);CB1=dct2(cb1);CB2=dct2(cb2);CBF= fusionrule(CB1,CB2,CB1,CB2);cbf=idct2(CBF);imf(i:i+bs-1,j:j+bs-1)=cbf;im1(i:i+bs-1,j:j+bs-1)=CB1;im2(i:i+bs-1,j:j+bs-1)=CB2;im3(i:i+bs-1,j:j+bs-1)=CBF;end
endfigure,imshow(M1,[]);
figure,imshow(M2,[]);
figure,imshow(imf,[]);figure,imshow(im1,[]);figure(1231);imagesc(M1)axis offaxis image
figure,imshow(im2,[]);figure(1232);imagesc(M2)axis offaxis image
figure,imshow(im3,[]);figure(1233);imagesc(imf)axis offaxis image
end
function imf=swt_dct2(M1,M2)
[m,n]=size(M1);
bs=4;
for i=1:bs:m
for j=1:bs:n
cb1 = M1(i:i+bs-1,j:j+bs-1);
cb2 = M2(i:i+bs-1,j:j+bs-1);
CB1=dct2(cb1);
CB2=dct2(cb2);
CBF= fusionrule(CB1,CB2,CB1,CB2);
cbf=idct2(CBF);
imf(i:i+bs-1,j:j+bs-1)=cbf;
im1(i:i+bs-1,j:j+bs-1)=CB1;
im2(i:i+bs-1,j:j+bs-1)=CB2;
im3(i:i+bs-1,j:j+bs-1)=CBF;
end
end
figure,imshow(M1,[]);
figure,imshow(M2,[]);
figure,imshow(imf,[]);
figure,imshow(im1,[]);
figure(1231);
imagesc(M1)
axis off
axis image
figure,imshow(im2,[]);
figure(1232);
imagesc(M2)
axis off
axis image
figure,imshow(im3,[]);
figure(1233);
imagesc(imf)
axis off
axis image
end
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

🌈4 Matlab代码及文献
相关文章:
【红外与可见光图像融合】离散平稳小波变换域中基于离散余弦变换和局部空间频率的红外与视觉图像融合方法(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
成都睿趣科技:抖音开通橱窗带货需要钱吗
随着社交媒体和电子商务的蓬勃发展,抖音作为一种流行的短视频平台,也推出了自己的“抖音橱窗”功能,让内容创作者能够通过视频展示和销售产品,从而实现商业化。那么,抖音橱窗带货是否需要费用呢? 首先,要开…...
中间件 - 分布式协调服务Zookeeper
目录 一. 前言 二. 树状结构 2.1. ZNode 2.1.1. stat 2.1.2. ACL 三. NameService命名服务 四. Configuration 配置管理 五. GroupMembers 集群管理 六. 集群三个角色及状态 七. 选举算法 八. Watcher 九. 设计目的 十. 典型使用场景 一. 前言 Zookeeper是一个分布…...
golang的实用工具
golang的实用工具 Go 语言提供了许多实用的工具,以下是其中一些常用的工具: 1. go run:用于直接运行 Go 源代码文件,无需显式编译。 2. go build:用于将 Go 代码编译成可执行文件或库。 3. go test:用于…...
图层混合模式(三)
差值模式 差值模式:查看每个通道的数值,用基色减去混合色或用混合色减去基色。具体取决于混合色与基色那个通道的数值更大。白色与任何颜色混合得到反相色,黑色与任何颜色混合颜色不变。 计算公式:结果色 绝对值(混合…...
蓝牙核心规范(V5.4)10.6-BLE 入门笔记之L2CAP
蓝牙篇之蓝牙核心规范(V5.4)深入详解汇总 1.概述 L2CAP负责协议复用、流量控制、服务数据单元(SDU)的分段和重组。它使用通道的概念来分隔在堆栈层之间传递的数据包序列。固定通道不需要设置,立即可用,并与特定的上层协议相关联。通道也可以通过指定的协议服务多路复用器…...
【计算机网络】DNS原理介绍
文章目录 DNS提供的服务DNS的工作机理DNS查询过程DNS缓存 DNS记录和报文DNS记录DNS报文针对DNS服务的攻击 DNS提供的服务 DNS,即域名系统(Domain Name System) 提供的服务 一种实现从主机名到IP地址转换的目录服务,为Internet上的用户应用程序以及其他…...
Docker的基础命令
目录 一、镜像操作 1、搜索镜像 2、下载镜像 3、查看镜像 3.1 查看下载到本地的所有镜像 3.2 查看单个镜像的详细信息 4、为镜像添加新的标签 5、镜像导出和导入到本地 5.1 镜像导出到本地 5.2 导入镜像 6、删除镜像 7、批量删除镜像 8、上传镜像 8.1 官网注册登录…...
提取项目依赖包的licenses
skywalking-eyes工具可以快速提取出licenses...
Vue项目自动转换px为rem-高保真还原设计图
前端开发中还原设计图的重要性毋庸置疑,目前来说应用最多的应该也还是使用rem。然而很多人依然还是处于刀耕火种的时代,要么自己去计算rem值,要么依靠编辑器安装插件转换。 而本文的目标就是通过一系列的配置后,在开发中可以直接使…...
rman备份到远程服务器
rman备份到远程服务器磁盘 原因 业务数据量较大,数据库服务器上无足够地空间存放rman备份,磁盘扩容申请不批。无奈采取nfs远程备份 环境信息 ip操作系统备份目录远程备份服务器192.168.3.130Centos7.9rmanbak数据库服务器192.168.3.132:1521Centos7.…...
数据结构与算法
目录 数据结构与算法 为什么要学习数据结构和算法? 常见的数据结构 常用算法 插入排序 一、概念及其介绍 二、适用说明 三、过程图示 希尔排序 一、概念及其介绍 二、适用说明 三、过程图示 归并排序 一、概念及其介绍 二、适用说明 三、过程图示 …...
【Web3】DAO相关的基础知识
这里写目录标题 DAO 的基础概念为什么需要 DAO?DAO 的种类 DAO 的运作方式知名 DAO 的介绍Bankless DAOSeeDAO DAO 的生态全景图分类治理框架DAO 的工具 DAO 众筹平台介绍 - JuiceBoxDAO 投票治理介绍 - SnapshotDAO 贡献 & 激励 - POAPDAO 信息管理 - NotionDA…...
一文教你学会ArcGIS Pro地图设计与制图系列全流程(3)
ArcGIS Pro做的成果图及系列文章目录: 系列文章全集: 《一文教你学会ArcGIS Pro地图设计与制图系列全流程(1)》《一文教你学会ArcGIS Pro地图设计与制图系列全流程(2)》《一文教你学会ArcGIS Pro地图设计与…...
用于大规模 MIMO 检测的近似消息传递 (AMP)(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
复杂SQL解析
文章目录 背景表SQL关键字分析具体Sql注意点补充:select的字段,也可以带有计算逻辑 背景表 1、sale_log as result: 主表,大部分字段都是取自这个表 2、sale_num as sale:需要从这个表获取真实销量sale_num字段 3、schedule as…...
js中哪些地方会用到window?
前言 Window 对象是JavaScript中的顶层对象,它代表了浏览器中打开的窗口或者标签页。浏览器中打开的每一个窗口/标签页都会有一个对应的 Window 对象。在浏览器中,全局作用域的 this 就是指向 Window 对象。 正文 在 JavaScript 中,window 对…...
KITTI raw_data数据集百度云下载
1. 百度云链接 链接:https://pan.baidu.com/s/1YNzfDoJomKOZhlVUr2eEOA?pwdtfh3 提取码:tfh3 –来自百度网盘超级会员V6的分享 2. 资料来源 https://www.cvlibs.net/datasets/kitti/raw_data.php 命令行执行./raw_data_downloader.sh #!/bin/bashfiles(2011_…...
(3) OpenCV图像处理kNN近邻算法
目录 一、介绍 1、类通过Matplotlib显示 2、Matplotlib显示效果 二、通过KNN近邻对新成员进行分类例程...
手撸RPC【gw-rpc】
文章目录 基于 Netty 的简易版 RPC需求分析简易RPC框架的整体实现协议模块 📖自定义协议 🆕序列化方式 🔢 服务工厂 🏭服务调用方 ❓前置知识——动态代理🕳️Proxy类InvocationHandler 接口 RPC服务代理类内嵌Netty客…...
RocketMQ延迟消息机制
两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后…...
css实现圆环展示百分比,根据值动态展示所占比例
代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...
椭圆曲线密码学(ECC)
一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...
Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动
一、前言说明 在2011版本的gb28181协议中,拉取视频流只要求udp方式,从2016开始要求新增支持tcp被动和tcp主动两种方式,udp理论上会丢包的,所以实际使用过程可能会出现画面花屏的情况,而tcp肯定不丢包,起码…...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...
Go 语言接口详解
Go 语言接口详解 核心概念 接口定义 在 Go 语言中,接口是一种抽象类型,它定义了一组方法的集合: // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的: // 矩形结构体…...
蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练
前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...
学校招生小程序源码介绍
基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...
智能在线客服平台:数字化时代企业连接用户的 AI 中枢
随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...
【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)
升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求ÿ…...

