Matlab随机数的产生
1、常见分布随机数的产生
1.1 二项分布
在贝努力试验中,某事件A发生的概率为p,重复该实验n次,X表示这n次实验中A发生的次数,则随机变量X服从的概率分布律(概率密度)为
记为
binopdf(x,n,p) pdf('bino',x,n,p)
返回参数为n和p的二项分布在x处的密度函数值(概率分布律值)。
>> clear
>> x=1:30;y=binopdf(x,300,0.05);
plot(x,y,'b*')

binocdf(x,n,p) cdf('bino',x,n,p)
返回参数为n和p的二项分布在x处的分布函数值
>> clear
>> x=1:30;y=binocdf(x,300,0.05);
>> plot(x,y,'b+')

icdf('bino',q,n,p)
逆分布计算,返回参数为n和p的二项分布的分布函数当概率为q时的x值。
>> p=0.1:0.01:0.99;
>> x=icdf('bino',p,300,0.05);
>> plot(p,x,'r-')

R=binornd(n,p,m1,m2)
产生m1行m2列的服从参数为n和p的二项分布的随机数据。
>> R=binornd(10,0.5,3,4)
R =0 6 5 56 6 5 54 5 5 4>> A=binornd(10,0.2,3)
A =1 2 21 3 12 2 2
1.2 泊松分布
泊松分布描述密度问题:比如显微镜下细菌的数量X,单位人口里感染某疾病的人口数X,单位时间内来到交叉路口的人数X(或车辆数X),单位时间内某手机收到的信息的条数X,等等。
X的分布律为(密度函数)
记为
其中参数λ表示平均值。
poisspdf(x,lambda) pdf('poiss',x,lambda)
返回参数为lambda的泊松分布在x处的概率值。
>> clear
>> x=0:30;p=pdf('poiss',x,4);
>> plot(x,p,'b+')

poisscdf(x,lambda) cdf('poiss',x,lambda)
返回参数为lambda的泊松分布在x处的分布函数值:
>> x=1:30;
>> p=cdf('poiss',x,5);
>> plot(x,p,'b*')

poissrnd(lambda,m1,m2)
返回m1行m2列的服从参数为lambda的泊松分布的随机数。
>> poissrnd(10,3,4)ans =15 10 9 714 10 7 910 9 14 10
>> poissrnd(10,3)ans =14 11 88 11 135 10 11
1.3 几何分布
在伯努利试验中,每次试验成功的概率为p,失败的概率为q=1-p,0<p<1。首次试验成功发生在第X次,则X的分布律为
geopdf(x,p)
返回服从参数为p的几何分布在x处的概率值。
>> x=1:20;
>> p=geopdf(x,0.05);
>> plot(x,p,'*')

>> x=1:20;
>> p=cdf('geo',x,0.05);
>> plot(x,p,'+')
返回分布函数值

>> R=geornd(0.2,3,4)
R =0 0 5 00 2 2 89 10 0 0
>> R1=geornd(0.2,3)
R1 =0 8 13 3 00 0 1
1.4 均匀分布(离散,等可能分布)

>> x=1:20;
>> p=unidpdf(x,20);f=unidcdf(x,20);
>> plot(x,p,'*',x,f,'+')

>> R=unidrnd(20,3,4)
R =1 14 8 1517 16 14 119 15 4 6
>> R=unidrnd(20,3)
R =1 14 12 7 917 20 8
1.5 均匀分布(连续型等可能)

>> clear
>> x=1:20;p=unifpdf(x,5,10);
>> p1=unifcdf(x,5,10);
>> plot(x,p,'r*',x,p1,'b-')

>> R=unifrnd(5,10,3,4)
R =8.8276 7.4488 8.5468 8.39858.9760 7.2279 8.7734 8.27555.9344 8.2316 6.3801 5.8131>> R1=unifrnd(5,10,3)
R1 =5.5950 6.7019 8.75637.4918 7.9263 6.27559.7987 6.1191 7.5298
1.6 指数分布(描述“寿命”问题)

>> x=0:0.1:10;
p=exppdf(x,5);
p1=expcdf(x,5);
plot(x,p,'*',x,p1,'-')

>> R=exprnd(5,3,4)
R =1.7900 3.0146 6.7835 1.02720.5776 9.8799 0.8675 7.06270.2078 9.5092 6.8466 0.3668>> R1=exprnd(5,3)
R1 =5.2493 2.4222 0.92678.1330 3.7402 2.67856.9098 5.2255 2.9917
1.7 正态分布
![]()

clear
x=-10:0.1:15;
p1=normpdf(x,2,4);p2=normpdf(x,4,4);p3=normpdf(x,6,4);
plot(x,p1,'r-',x,p2,'b-',x,p3,'g-'),
gtext('mu=2'),gtext('mu=4'),gtext('mu=6')

clear
x=-10:0.1:15;
p1=normpdf(x,4,4);p2=normpdf(x,4,9);p3=normpdf(x,4,16);
plot(x,p1,'r-',x,p2,'b-',x,p3,'g-'),
gtext('sig=2'),gtext('sig=3'),gtext('sig=4')

>> clear
>> x=-10:0.1:10;
>> p=normcdf(x,2,9);
>> plot(x,p,'-'),gtext('分布函数')

>> p=[0.01,0.05,0.1,0.9,0.05,0.975,0.9972];
>> x=icdf('norm',p,0,1)
x =
-2.3263 -1.6449 -1.2816
1.2816 -1.6449 1.96 2.7703
x=icdf('norm',p,0,1)
计算标准正态分布的分布函数的反函数值,即知道概率情况下,返回相应的分位数。
产生正态分布的随机数
>> R=normrnd(0,1,3,4)
R =1.5877 0.8351 -1.1658 0.7223-0.8045 -0.2437 -1.1480 2.58550.6966 0.2157 0.1049 -0.6669
>> R1=normrnd(0,1,3)
R1 =0.1873 -0.4390 -0.8880-0.0825 -1.7947 0.1001-1.9330 0.8404 -0.5445
相关文章:
Matlab随机数的产生
1、常见分布随机数的产生 1.1 二项分布 在贝努力试验中,某事件A发生的概率为p,重复该实验n次,X表示这n次实验中A发生的次数,则随机变量X服从的概率分布律(概率密度)为 记为 binopdf(x,n,p) p…...
计算机网络 第四章:网络层
一.网络层概述 1.1分组转发和路由选择 网络层的主要任务就是将分组从源主机经过多个网络和多段链路传输到目的主机,可以将该任务划分为分组转发和路由选择两种重要的功能。 如图所示:这些异构型网络如果只是需要各自内部通信,那它们只需要实…...
分享一个docker无法启动的小问题
准备看看docker服务怎么样 [rootlocalhost ~]# docker ps Cannot connect to the Docker daemon at unix:///var/run/docker.sock. Is the docker daemon running? 这一看就是docker的进程崩了,我们启动下进程 [rootlocalhost ~]# systemctl start docker Faile…...
Linux 安全 - Capabilities机制
文章目录 前言一、简介二、Capabilities list2.1 POSIX-draft defined capabilities2.2 Linux-specific capabilities 三、 Past and current implementation四、Thread capability sets五、File capabilities六、Transformation of capabilities during execve()七、Capabilit…...
分布式搜索引擎es-3
文章目录 数据聚合聚合的种类RestAPI实现聚合 数据聚合 什么是聚合? 聚合可以让我们极其方便的实现对数据的统计、分析、运算。例如: 什么品牌的手机最受欢迎?这些手机的平均价格、最高价格、最低价格?这些手机每月的销售情况如…...
Matlab坐标轴标签中文设置宋体
对y坐标输出中文宋体 新罗马字符 x[1,2,3,4,5,6,7]; plot(x) ylabel(\fontname{宋体}\fontsize{20}长度\fontname{Times New Roman}\fontsize{10} (μm))可以灵活设置字体和大小,其图片如下图所示 也可以对全图的文字设置同一个字体 set(gca,FontSize,9,Fontname, Times New…...
做一个贪吃蛇小游戏happy一下
直接Vue上代码 <template><div><div>贪吃蛇</div><canvas id"canvas" width"400" height"400"></canvas></div> </template><script> export default {data() {return {ctx: null,inter…...
opencv形态学-膨胀
opencv形态学-膨胀 膨胀就是取每一个位置结构元邻域内最大值作为该位置的输出灰度值; 膨胀是取邻域内最大值,那么显然膨胀后图像整体亮度会比原先要高,图像中亮的物体尺寸会变大,相反暗的尺寸会减小,甚至是消失 结构元…...
玄子Share 设计模式 GOF 全23种 + 七大设计原则
玄子Share 设计模式 GOF 全23种 七大设计原则 前言: 此文主要内容为 面向对象七大设计原则(OOD Principle)GOF(Gang Of Four)23种设计模式拓展的两个设计模式 简单工厂模式(Simple Factory Pattern&#x…...
单链表操作 C实现
struct LNode { //定义一个节点 int data; //数据域 struct LNode *next; //指针域 }; 0.初始化 typedef sturct LNode{ //定义单链表结点类型 int date ; //每个结点存放一个数据元素struct LNode *next; //指针指向下…...
WordPress主题网站首页添加好看的四格小工具教程
直接到网站根目录创建一个css文件(文件名:sige.css),文件名可自定义(注意文件名一致) <link rel"stylesheet" href"你的网站/sige.css" type"text/css" > 然后在header.php模板最上方添加引入代码 也可自定义HTML里添加css代码最上方写…...
unittest自动化测试框架讲解以及实战
为什么要学习unittest 按照测试阶段来划分,可以将测试分为单元测试、集成测试、系统测试和验收测试。单元测试是指对软件中的最小可测试单元在与程序其他部分相隔离的情况下进行检查和验证的工作,通常指函数或者类,一般是开发完成的。 单元…...
数学建模之Matlab基础操作
作者由于后续课程也要学习Matlab,并且之前也进行了一些数学建模的练习(虽然是论文手),所以花了几天零碎时间学习Matlab的基础操作,特此整理。 基本运算 a55 %加法,同理减法 b2^3 %立方 c5*2 %乘法 x 1; …...
【Nuxt】04 Nuxt2-SEO: sitemap.xml、seo优化、robots.txt
1 SiteMap设置 环境准备 注意生成sitemap依赖于nuxtjs/sitemap,并且需要用axios进行请求,不要使用nuxtjs/axios,不然会报错 sitemap.xml配置 在nuxt.config.js中配置下面的内容 npm install nuxtjs/sitemap npm install axios在static/s…...
VMware VSAN 入门
一、虚拟化的存储 1.1、对于数据中心来说最重要的是数据,而承载数据的设备就是存储设备(Storage) 1.2、物理服务器的本地存储阵列 与 虚拟化服务器的本地存储阵列 对比 1.3、避免单台服务器故障的虚拟化高级特性:vSphere HA技术 …...
【设计模式】备忘录模式
文章目录 1.备忘录模式定义2.备忘录模式的角色3.备忘录模式实现3.1.场景说明3.2.结构类图3.3.代码实现 4.备忘录模式优缺点5.备忘录模式适用场景6.备忘录模式总结 主页传送门:💁 传送 1.备忘录模式定义 备忘录(Memento Pattern)模…...
vue3+elementUiPlus表格导出功能
1.下载需要的组件包 npm install file-saver xlsx 2.页面中导入 import FileSaver from file-saver import * as XLSX from xlsx; 3.页面中的表格加一个id <el-table :data"tableData" ref"multipleTableRef" style"width…...
专题五:优先级队列
"你了解我,最干净的轮廓, 握住小小风车和放肆的梦~" 堆是一个不错的数据结构,而在计算机中,无法表示二叉分支结构,因此我们经常会看到使用线性表来作为堆的存储容器。在接触堆的时候,我们是把它…...
游戏设计模式专栏(一):工厂方法模式
引言 大家好,我是亿元程序员,一位有着8年游戏行业经验的主程。 本系列是《和8年游戏主程一起学习设计模式》,让糟糕的代码在潜移默化中升华,欢迎大家关注分享收藏订阅。 在游戏开发中,代码的组织和结构对于项目的可…...
element中使用el-steps 进度条效果demo(整理)
<template><div class"margin-top20"><!-- align-center 不要居中就去掉 --><!-- process-status 这几个参数值:改变颜色 wait / process / finish / error / --><!-- active 到第几个是绿色 --><el-steps :space&qu…...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...
3403. 从盒子中找出字典序最大的字符串 I
3403. 从盒子中找出字典序最大的字符串 I 题目链接:3403. 从盒子中找出字典序最大的字符串 I 代码如下: class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南 在数字化营销时代,邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天,我们将深入解析邮件打开率、网站可用性、页面参与时…...
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列,以便知晓哪些列包含有价值的数据,…...
Python 包管理器 uv 介绍
Python 包管理器 uv 全面介绍 uv 是由 Astral(热门工具 Ruff 的开发者)推出的下一代高性能 Python 包管理器和构建工具,用 Rust 编写。它旨在解决传统工具(如 pip、virtualenv、pip-tools)的性能瓶颈,同时…...
【LeetCode】3309. 连接二进制表示可形成的最大数值(递归|回溯|位运算)
LeetCode 3309. 连接二进制表示可形成的最大数值(中等) 题目描述解题思路Java代码 题目描述 题目链接:LeetCode 3309. 连接二进制表示可形成的最大数值(中等) 给你一个长度为 3 的整数数组 nums。 现以某种顺序 连接…...
深入解析光敏传感技术:嵌入式仿真平台如何重塑电子工程教学
一、光敏传感技术的物理本质与系统级实现挑战 光敏电阻作为经典的光电传感器件,其工作原理根植于半导体材料的光电导效应。当入射光子能量超过材料带隙宽度时,价带电子受激发跃迁至导带,形成电子-空穴对,导致材料电导率显著提升。…...
SQL进阶之旅 Day 22:批处理与游标优化
【SQL进阶之旅 Day 22】批处理与游标优化 文章简述(300字左右) 在数据库开发中,面对大量数据的处理任务时,单条SQL语句往往无法满足性能需求。本篇文章聚焦“批处理与游标优化”,深入探讨如何通过批量操作和游标技术提…...
Java设计模式:责任链模式
一、什么是责任链模式? 责任链模式(Chain of Responsibility Pattern) 是一种 行为型设计模式,它通过将请求沿着一条处理链传递,直到某个对象处理它为止。这种模式的核心思想是 解耦请求的发送者和接收者,…...
Vue 实例的数据对象详解
Vue 实例的数据对象详解 在 Vue 中,数据对象是响应式系统的核心,也是组件状态的载体。理解数据对象的原理和使用方式是成为 Vue 专家的关键一步。我将从多个维度深入剖析 Vue 实例的数据对象。 一、数据对象的定义方式 1. Options API 中的定义 在 Options API 中,使用 …...
