当前位置: 首页 > news >正文

机器学习小白理解之一元线性回归

关于机器学习,百度上一搜一大摞,总之各有各的优劣,有的非常专业,有的看的似懂非懂。我作为一名机器学习的门外汉,为了看懂这些公式和名词真的花了不少时间,还因此去着重学了高数。

不过如果不去看公式,而只去理解机器学习要干的事情,那么就比较容易看懂如何去理解那些公式和专有名词了,下面我以我的一些拙见来理解一下机器学习(全程无公式,只有理解)。

一、假设一个场景

有好多好多珠子要用签子一口气串起来,但不能动珠子,你只能选一个趁手的签子,能尽量多的把珠子串起来,你会选哪个?(插签子的动作必须要帅,只能如下动图的插法)

答案 

很显然,我们要选又细又长的签子去插这些珠子,因为这些珠子很明显排的还算整齐,用直直的签子很容易多插到几个。

而这个过程就是需要查看数据样本来确定函数拟合大概是一个怎么样的函数,我们这里就是一个简单的线性函数。

二、插签子

接下来我们就是进行插签子的环节,如果插签子的人很笨,他第一下插下去变成了下面这样:

这也太笨了吧,差那么多,嗯,这就是欠拟合,差的太大了,完全插不到一个。

第二次尝试,插成了这个样子:

嗯,比第一次好多了,再来一次:

很好,越来越接近了,再来一次:

完美,这次可以说插的非常漂亮,所以这个插的过程,有人叫它梯度下降,就是为了让签子插过足够多的珠子。

三、大力出奇迹 

如果有人大力得很,签子柔韧性又好,就插成了下面这样:

插得很好,签子把每个珠子的圆心都过了,但签子歪了,这就叫过拟合。

四、插签子的角度 

在寻找插签子的角度时,我们是通过签子与每个珠子的距离来做判断的:

每一次签子和珠子的距离越来越近,是靠肉眼去看的,换到公式中就是我们的代价函数(Cost Function)。 

五、总结

以上就是一元线性回归的理解,作为机器学习的入门,一元线性回归是最基础也最基本的。当然,文中的签子只是用来串现有的珠子,而真正的线性回归使用是为了预测结果,上文的场景只是为了表现一元线性回归的思路。

接下来有机会再讨论其他机器学习的内容,通过假设场景来描述机器学习的过程,然后再去看其他更权威的文章,那些公式可能就更容易理解了。

相关文章:

机器学习小白理解之一元线性回归

关于机器学习,百度上一搜一大摞,总之各有各的优劣,有的非常专业,有的看的似懂非懂。我作为一名机器学习的门外汉,为了看懂这些公式和名词真的花了不少时间,还因此去着重学了高数。 不过如果不去看公式&…...

目标检测:FROD: Robust Object Detection for Free

论文作者:Muhammad,Awais,Weiming,Zhuang,Lingjuan,Lyu,Sung-Ho,Bae 作者单位:Sony AI; Kyung-Hee University 论文链接:http://arxiv.org/abs/2308.01888v1 内容简介: 1)方向:目标检测 2)…...

linux 和 windows的換行符不兼容問題

linux 和 windows的換行符: 1.vim 模式下,執行命令: :set ffunix idea中設置code style...

ubuntu 20 安装 CUDA

1. 查看需要安装的cuda版本 nvidia-smi cuda的版本信息如下图所示 2. 去官网下载对应版本的CUDA 官网:CUDA Toolkit Archive | NVIDIA Developer 弹出以下界面,依次点击以下按钮 得到以下内容: 复制下载链接,下载cuda11到本…...

C++友元函数和友元类

友元介绍 类的友元函数是定义在类外部,但有权访问类的所有私有(private)成员和保护(protected)成员。尽管友元函数的原型有在类的定义中出现过,但是友元函数并不是成员函数。 友元可以是一个函数&#xf…...

特斯拉——使用人工智能制造智能汽车

特斯拉(Tesla)是电动汽车开发和推广的先驱。特斯拉对自动驾驶汽车的未来寄予厚望--实际上,每一辆特斯拉汽车都有可能通过软件升级成为自动驾驶汽车。该公司还生产和销售高级电池和太阳能电池板。 汽车的自动驾驶是按从1~5的等级划分的。自适应巡航控制和自动停车系…...

如何删除gitlab上多余的文件夹

无意间在提交代码时,包含了多余的 .idea 或者 __pychche__ 缓存文件夹等等,如何一次性删除呢? 实际上没有更好的办法,如果还没有合并,close 掉 MR就行了,重新提交。 如果已经合并了,就会留下记…...

computed和methods有什么区别

面试题:computed和methods有什么区别 标准而浅显的回答 在使用时,computed当做属性使用,而methods则当做方法调用computed可以具有getter和setter,因此可以赋值,而methods不行computed无法接收多个参数,而m…...

MySQL索引分类和操作(增删查)、聚集索引、二级索引(索引篇 二)

具体类型索引分类 分类主要作用特点主键索引(primary)针对于表中主键创建的索引默认自动创建, 只能有一个唯一索引(unique)避免同一个表中某数据列中的值重可以有多个常规索引最基本类型,可以加快查询速度可以有多个全文索引(fulltext)查找的是文本中的关键词&…...

(三)Python变量类型和运算符

所有的编程语言都支持变量,Python 也不例外。变量是编程的起点,程序需要将数据存储到变量中。 变量在 Python 内部是有类型的,比如 int、float 等,但是我们在编程时无需关注变量类型,所有的变量都无需提前声明&#x…...

vue三种import导入方式详解?

在Vue.js中,你可以使用三种不同的方式来导入模块或组件: 默认导入 (Default Import): 这种方式用于导入一个模块的默认导出(通常是一个组件或一个对象)。例如: import MyComponent from ./MyComponent.vue;…...

深入理解数据库视图

在数据库管理中,视图(View)是一种强大但常常被忽视的功能。它不仅可以简化复杂的查询操作,还可以提供更高层次的数据抽象和保护。 本文将详细解析视图的各个方面,并以《三国志》游戏的数据为例,给出实际应用场景。 文章目录 什么是视图?基本结构创建视图查看视图的定义…...

Java中@before和setup()方法的作用~

在Java中,setup()和Before同时使用的作用是在测试方法之前执行一些准备工作, setup()是JUnit中的一个方法,它通常被用来初始化测试对象和设置测试环境,它会在每个测试方法执行之前被调用,并且可以在多个测试方法中共享…...

前端uniapp防止页面整体滑动页面顶部以上,设置固定想要固定区域宽高

解决:设置固定想要固定区域宽高 目录 未改前图未改样式改后图改后样式 未改前图 未改样式 .main {display: flex;flex-direction: row;// justify-content: space-between;width: 100vw;// 防止全部移动到上面位置!!!&#xff01…...

浮点型数字

1. 浮点型的定义 浮点型(floating-point)是一种表示实数的计算机数据类型,它可以表示有限小数、无限小数和近似值。浮点型的表示方法基于科学计数法,即一个实数可以表示为尾数(有效数字)和指数的乘积。 在…...

贝叶斯统计入门

贝叶斯统计入门 贝叶斯统计是一种以系统和数学严密的方式来推理不确定性的方法。它以18世纪的数学家和哲学家托马斯贝叶斯命名,他开发了一个定理,提供了一种在收集新数据时更新我们对假设的信念的方式。 在贝叶斯统计中,我们从一个先验概率分…...

织梦CMS采集插件-DEDE插件大全

在如今充满信息爆炸的互联网时代,维护一个具有吸引力和活力的网站或博客是一项具有挑战性的任务。对于那些使用织梦CMS建立网站的用户来说,如何持续不断地更新内容以吸引访问者成为了一个突出的问题。 什么是织梦CMS自动采集插件?这些插件是为…...

vuereact质检工具(eslint)安装使用总结

1、ESLint ESLint工具主要类似java中的checkStyle和findbugs,是检查代码样式和逻辑规范的工具。 1.1、ESLint安装流程 打开VSCode软件,打开扩展中心,下载ESLint插件 图1.1 点击后面的install按进行安装,如图1.2所示&#xff1…...

yolox相关

yolox YOLOXYOLOX-DarkNet53yolov3作为baseline输入端Strong data augmentationMosaic数据增强MixUp数据增强注意 BackboneNeckPrediction层Decoupled headDecoupled Head 细节 Anchor-freeAnchor Based方式Anchor Free方式标签分配初步筛选精细化筛选 SimOTASimOTA Other Back…...

递归专题训练详解(回溯,剪枝,深度优先)

1.汉诺塔问题 在经典汉诺塔问题中,有 3 根柱子及 N 个不同大小的穿孔圆盘,盘子可以滑入任意一根柱子。一开始,所有盘子自上而下按升序依次套在第一根柱子上(即每一个盘子只能放在更大的盘子上面)。移动圆盘时受到以下限制: (1) 每次只能移动…...

大话软工笔记—需求分析概述

需求分析,就是要对需求调研收集到的资料信息逐个地进行拆分、研究,从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要,后续设计的依据主要来自于需求分析的成果,包括: 项目的目的…...

基于ASP.NET+ SQL Server实现(Web)医院信息管理系统

医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上,开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识,在 vs 2017 平台上,进行 ASP.NET 应用程序和简易网站的开发;初步熟悉开发一…...

Java 8 Stream API 入门到实践详解

一、告别 for 循环&#xff01; 传统痛点&#xff1a; Java 8 之前&#xff0c;集合操作离不开冗长的 for 循环和匿名类。例如&#xff0c;过滤列表中的偶数&#xff1a; List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成

厌倦手动写WordPress文章&#xff1f;AI自动生成&#xff0c;效率提升10倍&#xff01; 支持多语言、自动配图、定时发布&#xff0c;让内容创作更轻松&#xff01; AI内容生成 → 不想每天写文章&#xff1f;AI一键生成高质量内容&#xff01;多语言支持 → 跨境电商必备&am…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

多模态大语言模型arxiv论文略读(108)

CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题&#xff1a;CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者&#xff1a;Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式

今天是关于AI如何在教学中增强学生的学习体验&#xff0c;我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育&#xff0c;这并非炒作&#xff0c;而是已经发生的巨大变革。教育机构和教育者不能忽视它&#xff0c;试图简单地禁止学生使…...

vulnyx Blogger writeup

信息收集 arp-scan nmap 获取userFlag 上web看看 一个默认的页面&#xff0c;gobuster扫一下目录 可以看到扫出的目录中得到了一个有价值的目录/wordpress&#xff0c;说明目标所使用的cms是wordpress&#xff0c;访问http://192.168.43.213/wordpress/然后查看源码能看到 这…...

MacOS下Homebrew国内镜像加速指南(2025最新国内镜像加速)

macos brew国内镜像加速方法 brew install 加速formula.jws.json下载慢加速 &#x1f37a; 最新版brew安装慢到怀疑人生&#xff1f;别怕&#xff0c;教你轻松起飞&#xff01; 最近Homebrew更新至最新版&#xff0c;每次执行 brew 命令时都会自动从官方地址 https://formulae.…...

Linux系统部署KES

1、安装准备 1.版本说明V008R006C009B0014 V008&#xff1a;是version产品的大版本。 R006&#xff1a;是release产品特性版本。 C009&#xff1a;是通用版 B0014&#xff1a;是build开发过程中的构建版本2.硬件要求 #安全版和企业版 内存&#xff1a;1GB 以上 硬盘&#xf…...