【深度学习实验】卷积神经网络(二):自定义简单的二维卷积神经网络
目录
一、实验介绍
二、实验环境
1. 配置虚拟环境
2. 库版本介绍
三、实验内容
0. 导入必要的工具包
1. 二维互相关运算(corr2d)
2. 二维卷积层类(Conv2D)
a. __init__(初始化)
b. forward(前向传播函数)
3. 模型训练
一、实验介绍
本实验实现了一个简单的二维卷积神经网络,包括二维互相关运算函数和自定义二维卷积层类,并对一个随机生成是二维张量进行了卷积操作。
二、实验环境
本系列实验使用了PyTorch深度学习框架,相关操作如下:
1. 配置虚拟环境
conda create -n DL python=3.7  
conda activate DL 
pip install torch==1.8.1+cu102 torchvision==0.9.1+cu102 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
 
conda install matplotlib 
 conda install scikit-learn 
2. 库版本介绍
| 软件包 | 本实验版本 | 目前最新版 | 
| matplotlib | 3.5.3 | 3.8.0 | 
| numpy | 1.21.6 | 1.26.0 | 
| python | 3.7.16 | |
| scikit-learn | 0.22.1 | 1.3.0 | 
| torch | 1.8.1+cu102 | 2.0.1 | 
| torchaudio | 0.8.1 | 2.0.2 | 
| torchvision | 0.9.1+cu102 | 0.15.2 | 
三、实验内容
ChatGPT:
卷积神经网络(Convolutional Neural Network,简称CNN)是一种深度学习模型,广泛应用于图像识别、计算机视觉和模式识别等领域。它的设计灵感来自于生物学中视觉皮层的工作原理。
卷积神经网络通过多个卷积层、池化层和全连接层组成。
- 卷积层主要用于提取图像的局部特征,通过卷积操作和激活函数的处理,可以学习到图像的特征表示。
 - 池化层则用于降低特征图的维度,减少参数数量,同时保留主要的特征信息。
 - 全连接层则用于将提取到的特征映射到不同类别的概率上,进行分类或回归任务。
 卷积神经网络在图像处理方面具有很强的优势,它能够自动学习到具有层次结构的特征表示,并且对平移、缩放和旋转等图像变换具有一定的不变性。这些特点使得卷积神经网络成为图像分类、目标检测、语义分割等任务的首选模型。除了图像处理,卷积神经网络也可以应用于其他领域,如自然语言处理和时间序列分析。通过将文本或时间序列数据转换成二维形式,可以利用卷积神经网络进行相关任务的处理。

0. 导入必要的工具包
import torch
from torch import nn
import torch.nn.functional as F 
- torch.nn:PyTorch中的神经网络模块,提供了各种神经网络层和函数。
 - torch.nn.functional:PyTorch中的函数形式的神经网络层,如激活函数和损失函数等。
 
1. 二维互相关运算(corr2d)
【深度学习实验】卷积神经网络(一):卷积运算及其Pytorch实现(一维卷积:窄卷积、宽卷积、等宽卷积;二维卷积)_QomolangmaH的博客-CSDN博客
https://blog.csdn.net/m0_63834988/article/details/133278425?spm=1001.2014.3001.5501
如前文所示,在计算卷积的过程中,需要进行卷积核翻转.在具体实现上,一般会以互相关操作来代替卷积,从而会减少一些不必要的操作或开销。
- 翻转指从两个维度(从 上到下、从左到右)颠倒次序,即旋转180度。
 - 互相关和卷积的区别仅仅在于卷积核是否进行翻转.因此互相关也可以称为不翻转卷积。
 
在神经网络中使用卷积是为了进行特征抽取,卷积核是否进行翻转和其特征抽取的能力无关。特别是当卷积核是可学习的参数时,卷积和互相关在能力上是等价的.因此,为了实现上(或描述上)的方便起见,我们用互相关来代替卷积.事实上,很多深度学习工具中卷积操作其实都是互相关操作。
def corr2d(X, K): h, w = K.shapeY = torch.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))for i in range(Y.shape[0]):for j in range(Y.shape[1]):Y[i, j] = (X[i:i + h, j:j + w] * K).sum()return Y
 
 
- 输入:输入张量X和卷积核张量K。
 - 输出:互相关运算结果张量Y,形状为(X.shape[0] - K.shape[0] + 1, X.shape[1] - K.shape[1] + 1)。
 - 通过两个嵌套的循环遍历输出张量Y的每个元素,使用局部相乘和求和的方式计算互相关运算结果。
 
2. 二维卷积层类(Conv2D)
class Conv2D(nn.Module):def __init__(self, kernel_size, weight=None):super().__init__()if weight is not None:self.weight = weightelse:self.weight = nn.Parameter(torch.rand(kernel_size))self.bias = nn.Parameter(torch.zeros(1))def forward(self, x):return corr2d(x, self.weight) + self.bias 
 
a. __init__(初始化)
- 接受一个
kernel_size参数作为卷积核的大小,并可选地接受一个weight参数作为卷积核的权重。 - 如果没有提供
weight参数,则会随机生成一个与kernel_size相同形状的权重,并将其设置为可训练的参数(nn.Parameter)。 - 定义了一个偏置项
bias,也将其设置为可训练的参数。 
b. forward(前向传播函数)
 
        调用之前的corr2d函数,对输入x和卷积核权重self.weight进行相关性计算,并将计算结果与偏置项self.bias相加,作为前向传播的输出。
3. 模型测试
# 由于卷积层还未实现多通道,所以我们的图像也默认是单通道的
fake_image = torch.randn((5,5))
# 实例化卷积算子
conv = Conv2D(kernel_size=(3,3))
output = conv(fake_image) 
        创建了一个大小为(5, 5)的随机输入图像fake_image,然后实例化了Conv2D类,传入了卷积核大小为(3, 3)。接着调用conv对象的forward方法,对fake_image进行卷积操作,并将结果保存在output变量中。最后输出output的形状。

注意:本实验仅简单的实现了一个二维卷积层,只支持单通道的卷积操作,且不包含包含训练和优化等过程,欲知后事如何,请听下回分解。
相关文章:
【深度学习实验】卷积神经网络(二):自定义简单的二维卷积神经网络
目录 一、实验介绍 二、实验环境 1. 配置虚拟环境 2. 库版本介绍 三、实验内容 0. 导入必要的工具包 1. 二维互相关运算(corr2d) 2. 二维卷积层类(Conv2D) a. __init__(初始化) b. forward(前向传…...
Socket网络编程练习题三:客户端上传文件到服务器
题目 客户端:将本地文件上传到服务器,接收服务器的反馈服务端:接收客户端上传的文件,上传完毕之后给出反馈 代码实战 1、客户端代码 package com.heima;import java.io.*; import java.net.Socket;public class Client {publi…...
Excel技巧之【锁定工作簿】
Excel工作簿是Excel工作区中一个或多个工作表的集合,我们知道Excel可以设置锁定工作表,防止意外或被他人修改,但可能有小伙伴不知道,Excel工作簿也同样可以设置锁定,防止更改。 那工作簿锁定后会怎么样呢?…...
用于自然语言处理的 Python:理解文本数据
一、说明 Python是一种功能强大的编程语言,在自然语言处理(NLP)领域获得了极大的普及。凭借其丰富的库集,Python 为处理和分析文本数据提供了一个全面的生态系统。在本文中,我们将介绍 Python for NLP 的一些基础知识&…...
历史服务器
二、配置历史服务器 在spark-3.1.1-bin-hadoop2.7/conf/spark-defaults.conf添加以下配置,其中d:/log/spark为日志保存位置 spark.eventLog.enabled true spark.eventLog.dir file:///d:/log/spark spark.eventLog.compress true spark.history.fs.logDirectory fil…...
竞赛无人机搭积木式编程(四)---2023年TI电赛G题空地协同智能消防系统(无人机部分)
竞赛无人机搭积木式编程(四) ---2023年TI电赛G题空地协同智能消防系统(无人机部分) 无名小哥 2023年9月15日 赛题分析与解题思路综述 飞控用户在学习了TI电赛往届真题开源方案以及用户自定义航点自动飞行功能方案讲解后&#x…...
深入理解JavaScript中的事件冒泡与事件捕获
在JavaScript中,事件是交互式网页开发中的关键概念之一。了解事件冒泡和事件捕获是成为一名优秀的前端开发者所必需的技能之一。本文将深入探讨这两个概念,解释它们是如何工作的,以及如何在实际应用中使用它们来处理事件。 一.什么是事件冒泡…...
纯css html 真实水滴效果
惯例,不多说直接上图 秉承着开源精神,我们将这段代码无私地分享给大家,因为我们深信,信息的共享和互相学习是推动科技进步的关键。我们鼓励大家在使用这段代码的同时,也能够将其中的原理、思想和经验分享给更多的人。 这份代码是我们团队用心…...
HBASE集群主节点迁移割接手动操作步骤
HBASE集群主节点迁移割接手动操作步骤 HBASE集群主节点指的是包含zk、nn、HM和rm服务的节点,一般这类服务都是一起复用在同一批节点上,我把这一类节点统称为HBASE集群主节点。 本文中使用了rsync、pssh等工具,这类是开源的,自己…...
TRB爆仓分析,套利分析,行情判断!
毫无疑问昨日TRB又成为涨幅榜的明星,总结下来,多军赚麻,空头爆仓,套利爽歪歪! 先说风险最小的套利情况,这里两种套利都能实现收益。 现货与永续合约的资金费率套利年化资金费率达到惊人的3285%——DeFi的…...
LVGL - RV1109 LVGL UI刷新效率优化-02
说明 前面好早写过一个文章,说明如何把LVGL移到RV1109上的操作,使用DRM方式!但出现刷新效率不高的问题! 因为一直没有真正的应用在产品中,所以也就放下了! 最近开发上需要考虑低成本,低内存的…...
5、布局管理器
5、布局管理器 一、流式布局 package com.dryant.lesson1;import java.awt.*;public class TestFlowLayout {public static void main(String[] args) {Frame frame new Frame();Button button1 new Button("bt1");Button button2 new Button("bt2");…...
What is a UDP Flood Attack?
用户数据报协议 (UDP) 是计算机网络中使用的无连接、不可靠的协议。它在互联网协议 (IP) 的传输层上运行,并提供跨网络的快速、高效的数据传输。与TCP(其更可靠的对应物)不同,UDP不提…...
多核 ARM Server 性能调优
概述 thinkforce ARM Server是多核心ARM服务器,硬件环境资源如下: CPU信息如下: yuxunyuxun:/$ lscpu Architecture: aarch64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian …...
oracle执行计划中,同一条语句块,在不同情况下执行计划不一样问题。子查询,union 导致索引失效。
场景: 需要获取部分数据集(视图)的业务时间最大值,希望只通过一条语句获取多个的最大值。 则使用select (视图1业务时间最大值),(视图2业务时间最大值),(视图3业务时间最大值) from dual 程序执行过程中,发现语句执行较慢,则进行s…...
【新的小主机】向日葵远程控制ubuntu
向日葵远程控制ubuntu 一、简介二、问题及解决方法2.1 向日葵远程连接Ubuntu22主机黑屏?2.2 Ubuntu如何向日葵开机自启?2.3 无显示器情况下,windows远程桌面连接Ubuntu? 三、待续。。。 一、简介 系统:ubuntu22.04.3 目的&#…...
在Android studio高版本上使用低版本的Github项目库报错未能解析:Landroid/support/v4/app/FrageActivity;
我在我的项目中有一个导包: // 基础依赖包,必须要依赖 沉浸式狀態欄 implementation com.gyf.immersionbar:immersionbar:3.0.0 但是我的as版本比较高,我使用这个导包里面的方法会直接报错: java.lang.NoClassDefFoundError: Failed resolution of: Landroid/suppor…...
自动混剪多段视频、合并音频、添加文案的技巧分享
在如今的社交媒体时代,视频的重要性越来越被人们所重视。许多人喜欢记录生活中的美好瞬间,并将其制作成视频分享给朋友和家人。然而,对于那些拍摄了大量视频的人来说,一个一个地进行剪辑和合并可能是一项令人头痛的任务。但是&…...
学习笔记——BSGS
众所周知,北上广深是中国非常一线的城市,北京是首都,地处…… 正片开始! 一、BSGS基础算法 实现目标: A x ≡ B ( m o d P ) , ( gcd  ( P , A ) 1 ) A^x\equiv B(\mod P),(\gcd(P,A)1) Ax≡B(modP),(gcd(P,A)1)…...
【AI视野·今日NLP 自然语言处理论文速览 第四十期】Mon, 25 Sep 2023
AI视野今日CS.NLP 自然语言处理论文速览 Mon, 25 Sep 2023 Totally 46 papers 👉上期速览✈更多精彩请移步主页 Daily Computation and Language Papers ReConcile: Round-Table Conference Improves Reasoning via Consensus among Diverse LLMs Authors Justin C…...
OpenLayers 分屏对比(地图联动)
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能,和卷帘图层不一样的是,分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...
MySQL用户和授权
开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务: test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...
GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...
ABAP设计模式之---“简单设计原则(Simple Design)”
“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...
使用Spring AI和MCP协议构建图片搜索服务
目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式(本地调用) SSE模式(远程调用) 4. 注册工具提…...
人机融合智能 | “人智交互”跨学科新领域
本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...
七、数据库的完整性
七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...
现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?
现有的 Redis 分布式锁库(如 Redisson)相比于开发者自己基于 Redis 命令(如 SETNX, EXPIRE, DEL)手动实现分布式锁,提供了巨大的便利性和健壮性。主要体现在以下几个方面: 原子性保证 (Atomicity)ÿ…...
Java数值运算常见陷阱与规避方法
整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...
LRU 缓存机制详解与实现(Java版) + 力扣解决
📌 LRU 缓存机制详解与实现(Java版) 一、📖 问题背景 在日常开发中,我们经常会使用 缓存(Cache) 来提升性能。但由于内存有限,缓存不可能无限增长,于是需要策略决定&am…...
