当前位置: 首页 > news >正文

标准化、逻辑回归、随机梯度参数估计

机器学习入门

数据预处理:

  1. 将?替换为缺失值
data = data.replace(to_replace="?",value=np.nan)
  1. 丢掉缺失值
data.dropna(how="any)
#how=all删除全是缺失值的行和列
#haow=any删除有缺失值的行和列
  1. 将数据集划分成测试集和训练集
    data[column_name[1:10]]是自变量x
    data[column_name[10]是因变量y
from sklearn.cross_validation import train_test_split
X_train,X_test,y_train,y_test=train_test_split(data[column_names[1:10]],data[column_
  1. 查看训练集、测试集分布
y_train.value_counts()
y_test.value_counts()
  1. 进行标准化,上一篇说了标准化是什么。
from sklearn.preprocessing import StandardScaler
  1. 载入模型:逻辑回归(logistics),随机梯度参数估计(sgd)
# 逻辑回归
from sklearn.linear_model import LogisticRegression
# 随机梯度参数估计
from sklearn.linear_model import SGDClassifier
  1. 标准化
ss = StandardScaler()
x_train = ss.fit_transform(x_train)
x_test = ss.fit_transform(x_test)
  1. 初始化模型
lr = LogisticRegression()
sgdc = SGDClassifier()
  1. 训练模型,预测模型
# 模型训练
lr.fit(x_train,y_train)
# 预测模型
lr_y_predict = lr.predict(x_test)
sgdc.fit(x_train,y_train)
sgdc_y_predict = sgdc.predict(x_test)
  1. 衡量指标
from sklearn.metrics import classification_report
  1. 准确度
print ('Accuracy of LR Classifier:',lr.score(x_test,y_test))
print ('Accuracy of SGD Classifier:',sgdc.score(x_test,y_test))
  1. 生成报告
print(classification_report(y_test,lr_y_predict,target_names=['Benign','Malignant']))
print(classification_report(y_test,sgdc_y_predict,target_names=['Benign','Malignant']))

在这里插入图片描述

相关文章:

标准化、逻辑回归、随机梯度参数估计

机器学习入门 数据预处理: 将?替换为缺失值 data data.replace(to_replace"?",valuenp.nan)丢掉缺失值 data.dropna(how"any) #howall删除全是缺失值的行和列 #haowany删除有缺失值的行和列将数据集划分成测试集和训练集 data[colu…...

【数据结构】【C++】封装哈希表模拟实现unordered_map和unordered_set容器

【数据结构】&&【C】封装哈希表模拟实现unordered_map和unordered_set容器 一.哈希表的完成二.改造哈希表(泛型适配)三.封装unordered_map和unordered_set的接口四.实现哈希表迭代器(泛型适配)五.封装unordered_map和unordered_set的迭代器六.解决key不能修改问题七.实…...

26967-2011 一般用喷油单螺杆空气压缩机

声明 本文是学习GB-T 26967-2011 一般用喷油单螺杆空气压缩机. 而整理的学习笔记,分享出来希望更多人受益,如果存在侵权请及时联系我们 1 范围 本标准规定了一般用喷油单螺杆空气压缩机(以下简称"单螺杆空压机")的术语和定义、型号、基本 参数、要求、试验方法、…...

Opengl之模板测试

当片段着色器处理完一个片段之后,模板测试(Stencil Test)会开始执行,和深度测试一样,它也可能会丢弃片段。接下来,被保留的片段会进入深度测试,它可能会丢弃更多的片段。模板测试是根据又一个缓冲来进行的,…...

iPhone苹果手机复制粘贴内容提示弹窗如何取消关闭提醒?

经常使用草柴APP查询淘宝、天猫、京东商品优惠券拿购物返利的iPhone苹果手机用户,复制商品链接后打开草柴APP粘贴商品链接查券时总是弹窗提示粘贴内容,为此很多苹果iPhone手机用户联系客服询问如何关闭iPhone苹果手机复制粘贴内容弹窗提醒功能的方法如下…...

释放潜力:人工智能对个性化学习的影响

人工智能有潜力通过使个性化学习成为一种实用且可扩展的方法来彻底改变教育。它使教育工作者能够满足每个学生的独特需求,促进参与并提高整体学习成果。然而,必须解决道德问题,并确保技术仍然是教育工作者手中的工具,为学生创造更…...

什么是Local Storage和Session Storage?它们之间有什么区别?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 什么是 Local Storage 和 Session Storage?Local Storage(本地存储)Session Storage(会话存储) ⭐ 区别⭐ 示例⭐ 写在最后 ⭐ 专栏简介 前端入门之旅:探索Web开发的…...

单样本T检验|独立样本T检验|配对样本T检验(绘图)

学生 t 检验的基本思想是通过比较两组数据的均值以及它们的方差来判断是否存在显著差异。下面更详细地解释了学生 t 检验的基本思想: 均值比较:学生 t 检验的首要目标是比较两组数据的均值。我们通常有一个零假设(null hypothesis&#xff09…...

全面解读 SQL 优化 - 统计信息

一、简介 数据库中的优化器(optimizer)是一个重要的组件,用于分析 SQL 查询语句,并生成执行计划。在生成执行计划时,优化器需要依赖数据库中的统计信息来估算查询的成本,从而选择最优的执行计划。以下是关…...

Spring整合RabbitMQ——生产者

1.生产者整合步骤 添加依赖坐标,在producer和consumer模块的pom文件中各复制一份。 配置producer的配置文件 配置producer的xml配置文件 编写测试类发送消息...

Spring的注解开发-Bean基本注解开发

Bean基本注解开发 Spring除了xml配置文件进行配置之外,还可以使用注解方式进行配置,注解方式慢慢成为xml配置的替代方案。我们有了xml开发的经验,学习注解开发就会方便很多,注解开发更加快捷方便。Spring提供的注解有三个版本 2.…...

【Ubuntu18.04】Autoware.ai安装

Autoware.ai安装 引言1 ROS安装2 Ubuntu18.04安装Qt5.14.23 安装GCC、G4 Autoware.ai-1.14.0安装与编译4.1 源码的编译4.1.1 python2.7环境4.1,2 针对Ubuntu 18.04 / Melodic的依赖包安装4.1.3 先安装一些缺的ros依赖4.1.4 安装eigen3.3.74.1.5 安装opencv 3.4.164.1.6 编译4.1…...

SpringMVC 学习(一)Servlet

本系列文章为【狂神说 Java 】视频的课堂笔记&#xff0c;若有需要可配套视频学习。 1. Hello Servlet (1) 创建父工程 删除src文件夹 引入一些基本的依赖 <!--依赖--> <dependencies><dependency><groupId>junit</groupId><artifactId>…...

26943-2011 升降式高杆照明装置 课堂随笔

声明 本文是学习GB-T 26943-2011 升降式高杆照明装置. 而整理的学习笔记,分享出来希望更多人受益,如果存在侵权请及时联系我们 1 范围 本标准规定了升降式高杆照明装置的技术要求、试验方法、检验规则以及标志、包装、运输及贮 存等。 本标准适用于公路、广场、机场、港口、…...

洛谷题解 | AT_abc321_c Primes on Interval

目录 题目翻译题目描述输入格式输出格式样例 #1样例输入 #1样例输出 #1 样例 #2样例输入 #2样例输出 #2 样例 #3样例输入 #3样例输出 #3 题目简化题目思路AC代码 题目翻译 【题目描述】 你决定用素数定理来做一个调查. 众所周知, 素数又被称为质数&#xff0c;其含义就是除了数…...

Quartus医院病房呼叫系统病床呼叫Verilog,源代码下载

名称&#xff1a;医院病房呼叫系统病床呼叫 软件&#xff1a;Quartus 语言&#xff1a;Verilog 要求&#xff1a; 1、用1~6个开关模拟6个病房的呼叫输入信号,1号优先级最高;1~6优先级依次降低; 2、 用一个数码管显示呼叫信号的号码;没信号呼叫时显示0;有多个信号呼叫时,显…...

ip的标准分类---分类的Ip

分类的 IP 即将 IP 地址划分为若干个固定类&#xff0c;每一类地址都由两个固定长度的字段组成。 其中第一个字段是网络号&#xff08;net-id&#xff09;&#xff0c;它标志主机或路由器所连接的网络。一个网络号在整个因特网内必须是唯一的。 第二个字段是主机号&#xf…...

理解并掌握C#的Channel:从使用案例到源码解读(一)

引言 在C#的并发编程中&#xff0c;Channel是一种非常强大的数据结构&#xff0c;用于在生产者和消费者之间进行通信。本文将首先通过一个实际的使用案例&#xff0c;介绍如何在C#中使用Channel&#xff0c;然后深入到Channel的源码中&#xff0c;解析其内部的实现机制。 使用案…...

如何让git命令仅针对当前目录

背景 我们有时候建的git仓库是这样的&#xff0c;a目录下有b、c、d三个模块&#xff08;文件夹&#xff09;。有时候只想查看b下面的变化&#xff0c;而使用 git status、git diff 的时候会把c和d的变化都列出来&#xff0c;要怎么只查b目录的变化&#xff1f; 操作 要查b目…...

【0223】源码剖析smgr底层设计机制(3)

1. smgr设计机制 PG内核中smgr完整磁盘存储介质的管理是通过下面三部分实现的。 1.1 函数指针结构体 f_smgr 函数指针结构体 f_smgr。 通过该函数指针类型,可完成类似于UNIX系统中的VFD功能,上层只需要调用open()、read()、write()等系统函数,用户不必去关系底层的文件系统…...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

Linux简单的操作

ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集&#xff0c;包含8种湿地亚类&#xff0c;该数据以0.5X0.5的瓦片存储&#xff0c;我们整理了所有属于中国的瓦片名称与其对应省份&#xff0c;方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享

文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的&#xff0c;根据Excel列的需求预估的工时直接打骨折&#xff0c;不要问我为什么&#xff0c;主要…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明

AI 领域的快速发展正在催生一个新时代&#xff0c;智能代理&#xff08;agents&#xff09;不再是孤立的个体&#xff0c;而是能够像一个数字团队一样协作。然而&#xff0c;当前 AI 生态系统的碎片化阻碍了这一愿景的实现&#xff0c;导致了“AI 巴别塔问题”——不同代理之间…...

Linux --进程控制

本文从以下五个方面来初步认识进程控制&#xff1a; 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程&#xff0c;创建出来的进程就是子进程&#xff0c;原来的进程为父进程。…...

回溯算法学习

一、电话号码的字母组合 import java.util.ArrayList; import java.util.List;import javax.management.loading.PrivateClassLoader;public class letterCombinations {private static final String[] KEYPAD {"", //0"", //1"abc", //2"…...

PAN/FPN

import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...

排序算法总结(C++)

目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指&#xff1a;同样大小的样本 **&#xff08;同样大小的数据&#xff09;**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...