机器学习之单层神经网络的训练:增量规则(Delta Rule)
文章目录
- 权重的调整
- 单层神经网络使用delta规则的训练过程

- 神经网络以
权值的形式存储信息,根据给定的信息来修改权值的系统方法称为学习规则。由于训练是神经网络系统地存储信息的唯一途径,因此学习规则是神经网络研究中的一个重要组成部分
权重的调整

(Xj 为结点的输入,Yi为结点的输出,Wij为其之间的权重,ei为正确值di 与输出值Yi的误差)
- 如果一个输入节点导致了输出节点的误差,则两个节点之间的权重按输入值xj和输出误差ei的比例进行调整
那么这个公式:

α=学习率(0< a <1)
- 学习速率α决定了每次权重的多少。如果这个值过高,输出就会在解决方案中徘徊,无法收敛。相反,如果它太低,计算到达解的速度太慢
单层神经网络使用delta规则的训练过程
1.以足够的值初始化权重。
2.从{输入,正确输出}的训练数据中取“输入”,输入神经网络。计算从正确的输出di到输入的输出yi的误差。

3.根据以下delta规则计算权重更新:

4。调整重量为:

5。对所有训练数据执行步骤2-4。
6.重复步骤2-5,直到误差达到可接受的公差水平。
- 这些步骤几乎与“
神经网络的监督学习”部分中的监督学习过程完全相同。唯一的区别是增加了步骤6。步骤6只是说明整个训练过程是重复的。一旦完成步骤5,就用每个数据点对模型进行训练。那么,为什么我们要使用所有相同的训练数据来训练它呢?这是因为delta规则在重复这个过程时搜索解决方案,而不是一次性解决它。3整个过程重复进行,因为用相同的数据再训练模型可能会改进模型。
训练过程

相关文章:
机器学习之单层神经网络的训练:增量规则(Delta Rule)
文章目录 权重的调整单层神经网络使用delta规则的训练过程 神经网络以权值的形式存储信息,根据给定的信息来修改权值的系统方法称为学习规则。由于训练是神经网络系统地存储信息的唯一途径,因此学习规则是神经网络研究中的一个重要组成部分 权重的调整 (…...
C# Task任务详解
文章目录 前言Task返回值无参返回有参返回 async和await返回值await搭配使用Main async改造 Task进阶Task线程取消测试用例超时设置 线程暂停和继续测试用例 多任务等最快多任务全等待 结论 前言 Task是对于Thread的封装,是极其优化的设计,更加方便了我…...
百度网盘的扩容
百度网盘的扩容怎么扩 百度网盘的扩容通常需要购买额外的存储空间。以下是扩容百度网盘存储空间的一般步骤: 登录百度网盘:首先,在您的计算机或移动设备上打开百度网盘,并使用您的百度账号登录。 选择扩容选项:一旦登…...
Android 悬浮窗
本文参考文章地址:https://juejin.cn/post/7009180088310693919 一、申请权限 <uses-permission android:name"android.permission.SYSTEM_ALERT_WINDOW" />二、创建悬浮窗service <serviceandroid:name".FloatingWindowService"an…...
3.物联网射频识别,(高频)RFID应用ISO14443-2协议
一。ISO14443-2协议简介 1.ISO14443协议组成及部分缩略语 (1)14443协议组成(下面的协议简介会详细介绍) 14443-1 物理特性 14443-2 射频功率和信号接口 14443-3 初始化和防冲突 (分为Type A、Type B两种接口&…...
数据分析笔记1
数据分析概述:数据获取--探索分析与可视化--预处理--分析建模--模型评估 数据分析含义:利用统计与概率的分析方法提取有用的信息,最后进行总结与概括 一、数据获取 实用网站:kaggle 阿里云天池 数据仓库:将所有业务数据…...
paramiko 3
import paramiko import concurrent.futuresdef execute_remote_command(hostname, username, password, command):try:# 创建SSH客户端client paramiko.SSHClient()client.set_missing_host_key_policy(paramiko.AutoAddPolicy())# 使用密码认证连接远程主机client.connect(h…...
基于Dlib训练自已的人脸数据集提高人脸识别的准确率
前言 由于图像的质量、光线、角度等因素影响。这时如果使用官方提供的模型做人脸识别,就会导至识别率不是很理想。人脸识别的准确率与图像的清晰度和质量有关。如果图像模糊、光线不足或者有其他干扰因素,Dlib 可能无法正确地识别人脸。为了确保图像质量…...
Git 详细安装教程(详解 Git 安装过程的每一个步骤
Git 详细安装教程(详解 Git 安装过程的每一个步骤) 该文章详细具体,值得收藏学习...
kafka伪集群部署,使用KRAFT模式
1:拉去管理kafka界面UI镜像 docker pull provectuslabs/kafka-ui2:拉去管理kafka镜像 docker pull bitnami/kafka3:docker-compose.yml version: 3.8 services:kafka-1:container_name: kafka1image: bitnami/kafka ports:- "19092:19092"- "19093:19093&quo…...
【双指针遍历】N数之和问题
文章目录 二数之和LC1三数之和LC15四数之和LC18最接近的三数之和LC16 二数之和LC1 题目链接 给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。 你可以假设每种输入只会对…...
Qt的QObject类
文章目录 QObject类如何在Qt中使用QObject的信号与槽机制?如何在Qt中使用QObject的属性系统?QObject的元对象系统如何实现对象的反射功能? QObject类 Qt的QObject类是Qt框架中的基类,它是所有Qt对象的父类。QObject提供了一些常用…...
【图论C++】链式前向星(图(树)的存储)
/*** file * author jUicE_g2R(qq:3406291309)————彬(bin-必应)* 一个某双流一大学通信与信息专业大二在读 * * brief 一直在竞赛算法学习的路上* * copyright 2023.9* COPYRIGHT 原创技术笔记:转载需获得博主本人…...
16.PWM输入捕获示例程序(输入捕获模式测频率PWMI模式测频率和占空比)
目录 输入捕获相关库函数 输入捕获模式测频率 PWMI模式测频率和占空比 两个代码的接线图都一样,如下 测量信号的输入引脚是PA6,信号从PA6进来,待测的PWM信号也是STM32自己生成的,输出引脚是PA0。 需要配置电路连接图示如下&…...
pip version 更新
最近报了一个错: 解决办法: 在cmd输入“conda install pip” conda install pip 完了之后再输入: python -m pip install --upgrade pip ok....
Oracle - 多区间按权重取值逻辑
啰嗦: 其实很早就遇到过类似问题,也设想过,不过一致没实际业务需求,也就耽搁了;最近有业务提到了,和同事讨论,各有想法,所以先把逻辑整理出来,希望有更好更优的解决方案;…...
本次CTF·泰山杯网络安全的基础知识部分(二)
简记23年九月参加的泰山杯网络安全的部分基础知识的题目,随时补充 15(多选)网络安全管理工作必须坚持“谁主管、谁负责,谁运营、谁负责,谁使用、谁负责”的原则,和“属地管理”的原则 谁主管、谁负责&…...
MyBatis 映射文件(Mapper XML):配置与使用
MyBatis 映射文件(Mapper XML):配置与使用 MyBatis是一个强大的Java持久化框架,它允许您将SQL查询、插入、更新和删除等操作与Java方法进行映射。这种映射是通过MyBatis的映射文件,通常称为Mapper XML文件来实现的。本…...
基于 SpringBoot 的大学生租房网站
文章目录 1 简介2 技术栈3 需求分析4 系统设计5 系统详细设计5.1系统功能模块5.2管理员模块5.3房主功能模块5.4用户功能模块 源码咨询 1 简介 本大学生租房系统使用简洁的框架结构,专门用于用户浏览首页,房屋信息,房屋评价,公告资…...
BL808学习日志-0-概念理解
一、主核心的介绍 1.三个核心在FREERTOS系统中相互独立,各负责各自的外设和程序;其中M0和LP核心在一个总线上,D0单独在一个总线上,两个总线使用AXI4.0(??)通讯? CPU0(M0)-E907架构,320MHz; CPU1(LP)-E9…...
Golang dig框架与GraphQL的完美结合
将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...
Java面试专项一-准备篇
一、企业简历筛选规则 一般企业的简历筛选流程:首先由HR先筛选一部分简历后,在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如:Boss直聘(招聘方平台) 直接按照条件进行筛选 例如:…...
图表类系列各种样式PPT模版分享
图标图表系列PPT模版,柱状图PPT模版,线状图PPT模版,折线图PPT模版,饼状图PPT模版,雷达图PPT模版,树状图PPT模版 图表类系列各种样式PPT模版分享:图表系列PPT模板https://pan.quark.cn/s/20d40aa…...
【Oracle】分区表
个人主页:Guiat 归属专栏:Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...
鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南
1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发,使用DevEco Studio作为开发工具,采用Java语言实现,包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...
Reasoning over Uncertain Text by Generative Large Language Models
https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...
Fabric V2.5 通用溯源系统——增加图片上传与下载功能
fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...
论文笔记——相干体技术在裂缝预测中的应用研究
目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术:基于互相关的相干体技术(Correlation)第二代相干体技术:基于相似的相干体技术(Semblance)基于多道相似的相干体…...
打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用
一、方案背景 在现代生产与生活场景中,如工厂高危作业区、医院手术室、公共场景等,人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式,存在效率低、覆盖面不足、判断主观性强等问题,难以满足对人员打手机行为精…...
