Pytorch中关于forward函数的理解与用法
目录
- 前言
- 1. 问题所示
- 2. 原理分析
- 2.1 forward函数理解
- 2.2 forward函数用法
前言
深入深度学习框架的代码,发现forward函数没有被显示调用
但代码确重写了forward函数,于是好奇是不是python的魔术方法作用
1. 问题所示
代码如下所示:
class Module(nn.Module):# 初始化def __init__(self):super(Module, self).__init__()# ......# 前向传播def forward(self, x):# ......return x# 输入数据
data = ..... # 实例化
module = Module()# 前向传播
module(data)
整个代码串没有显示调用forward函数
由此引发疑问:
- 谁去调用forward函数?
- 什么时候调用forward函数?
2. 原理分析
回顾python的基础知识:python 类和对象的详细分析
可以清楚知道对象需要执行方法,在方法中传入参数即可,类似 module.forward(data),但是执行对象(参数)就可成功。
这也说明:module(data) 等价于 module.forward(data)。
即该代码块调用了forward函数(那他是怎样实现什么时候调用的呢)
本身Pytorch大部分操作都是通过继承nn.Module类实现,查看其源代码:
class Module(object):def __init__(self):def forward(self, *input):def add_module(self, name, module):def cuda(self, device=None):def cpu(self):def __call__(self, *input, **kwargs):def parameters(self, recurse=True):def named_parameters(self, prefix='', recurse=True):def children(self):def named_children(self):def modules(self): def named_modules(self, memo=None, prefix=''):def train(self, mode=True):def eval(self):def zero_grad(self):def __repr__(self):def __dir__(self):
内部中有个def __call__(self, *input, **kwargs):函数,默认父类会执行该函数
大致如下:
class Module():def __call__(self, data): print(data)module = Module()# 输出 1
module(1)
这正说明,深度学习的模型继承了nn.Module类,内部的__call__方法有对forward方法的调用,才不用显式地调用forward方法。
对此,深度学习的模型框架需要重写构造函数中的__init__函数和forward函数。
2.1 forward函数理解
- 通过module中的__call__方法
- __call__方法调用module中的forward方法
- forward方法
—若碰到Module子类,则迭代回馈第一步;
—若碰到Function子类,则执行第四步; - 调用Function子类中的call方法
- __call__方法调用Function中的forward方法
- 由于层层嵌套,现在只需回馈上一层的值即可
( Function中的forward返回值 ->
module中的forward返回值 ->
module中的__call__进行forward_hook返回值)
代码逻辑如下:
def __call__(self, *input, **kwargs):# 此处执行forward函数result = self.forward(*input, **kwargs)for hook in self._forward_hooks.values():#将注册的hook拿出来用hook_result = hook(self, input, result)return result
-
围观角度:所谓的__call__为函数调用,只需要将该类型的对象当做函数使用即可,即
module(data)等价于module.forward(data)。 -
宏观角度:当一个类默认实现特殊方法__call__,该类的实例就变成可调用的类型,即
对象名()等价于对象名.__call__()
2.2 forward函数用法
CNN可学习的参数层和不可学习的参数层,大致如下:
- 可学习的参数:卷积层和全连接层的权重、bias、BatchNorm的β和γ等。
- 不可学习的参数(超参数):学习率、batch size、weight decay、模型的深度宽度分辨率等。
- Module类中的init构造函数一般放置可学习的参数,其不可学习的参数如果不放置在init层,则在forward函数中可用nn.functional来代替。
- forward函数必须重写(实现模型功能,链接各层之间的功能)
相关文章:
Pytorch中关于forward函数的理解与用法
目录 前言1. 问题所示2. 原理分析2.1 forward函数理解2.2 forward函数用法 前言 深入深度学习框架的代码,发现forward函数没有被显示调用 但代码确重写了forward函数,于是好奇是不是python的魔术方法作用 1. 问题所示 代码如下所示: cla…...
vite跨域proxy设置与开发、生产环境的接口配置,接口在生产环境下,还能使用proxy代理地址吗
文章目录 vite的proxy开发环境设置如果后端没有提供可以替换的/mis等可替换的后缀的处理办法接口如何区分.env.development开发和.env.production生产环境接口在生产环境下,还能使用proxy代理地址吗? vite的proxy开发环境设置 环境: vite 4…...
【嵌入式】使用MultiButton开源库驱动按键并控制多级界面切换
目录 一 背景说明 二 参考资料 三 MultiButton开源库移植 四 设计实现--驱动按键 五 设计实现--界面处理 一 背景说明 需要做一个通过不同按键控制多级界面切换以及界面动作的程序。 查阅相关资料,发现网上大多数的应用都比较繁琐,且对于多级界面的…...
【数据结构】树的概念理解和性质推导(保姆级详解,小白必看系列)
目录 一、前言 🍎 为什么要学习非线性结构 ---- 树(Tree) 💦 线性结构的优缺点 💦 优化方案 ----- 树(Tree) 💦 树的讲解流程 二、树的概念及结构 🍐 树的概念 &…...
融合之力:数字孪生、人工智能和数据分析的创新驱动
数字孪生、人工智能(AI)和数据分析是当今科技领域中的三个重要概念,它们之间存在着紧密的关联和互动,共同推动了许多领域的创新和发展。 一、概念 数字孪生是一种数字化的模拟技术,它通过复制现实世界中的物理实体、…...
Spring的注解开发-Spring配置类的开发
Bean配置类的注解开发 Component等注解替代了<bean>标签,但像<import>、<context:componentScan>等非<bean>标签怎样去使用注解去替代呢?定义一个配置类替代原有的xml配置文件,<bean>标签以外的标签ÿ…...
Linux系统编程系列之进程间通信-信号量组
一、什么是信号量组 信号量组是信号量的一种, 是system-V三种IPC对象之一,是进程间通信的一种方式。 二、信号量组的特性 信号量组不是用来传输数据的,而是作为“旗语”,用来协调各进程或者线程工作的。信号量组可以一次性在其内…...
centos 6使用yum安装软件
1. 执行以下命令,查看当前操作系统 CentOS 版本。 cat /etc/centos-release返回结果如下图所示,则说明当前操作系统版本为 CentOS 6.9。 2. 执行以下命令,编辑 CentOS-Base.repo 和CentOS-Epel.repo文件。 vim /etc/yum.repos.d/CentOS-Bas…...
maven无法下载时的解决方法——笔记
右键项目然后点击创建setting.xml(因为现在创建了,所以没显示了,可以直接点击打开setting.xml) 然后添加 <mirror><id>nexus-aliyun</id><mirrorOf>*,!jeecg,!jeecg-snapshots</mirrorOf><name…...
Java Spring Boot 开发框架
Spring Boot是一种基于Java编程语言的开发框架,它的目标是简化Java应用程序的开发过程。Spring Boot提供了一种快速、易于使用的方式来创建独立的、生产级别的Java应用程序。本文将介绍Spring Boot的特性、优势以及如何使用它来开发高效、可靠的应用程序。 一、简介…...
Pytorch学习记录-1-张量
1. 张量 (Tensor): 数学中指的是多维数组; torch.Tensor data: 被封装的 Tensor dtype: 张量的数据类型 shape: 张量的形状 device: 张量所在的设备,GPU/CPU requires_grad: 指示是否需要计算梯度 grad: data 的梯度 grad_fn: 创建 Tensor 的 Functio…...
paddle2.3-基于联邦学习实现FedAVg算法-CNN
目录 1. 联邦学习介绍 2. 实验流程 3. 数据加载 4. 模型构建 5. 数据采样函数 6. 模型训练 1. 联邦学习介绍 联邦学习是一种分布式机器学习方法,中心节点为server(服务器),各分支节点为本地的client(设备&#…...
nuiapp保存canvas绘图
要保存一个 Canvas 绘图,可以使用以下步骤: 获取 Canvas 元素和其绘图上下文: var canvas document.getElementById("myCanvas"); var ctx canvas.getContext("2d");使用 Canvas 绘图 API 绘制图形。 使用 toDataUR…...
Object.defineProperty()方法详解,了解vue2的数据代理
假期第一篇,对于基础的知识点,我感觉自己还是很薄弱的。 趁着假期,再去复习一遍 Object.defineProperty(),对于这个方法,更多的还是停留在面试的时候,面试官问你vue2和vue3区别的时候,不免要提一提这个方法…...
Linux 磁盘管理
Linux 系统的磁盘管理直接关系到整个系统的性能表现。磁盘管理常用三个命令为: df、du 和 fdisk。 df df(英文全称:disk free)。df 命令用于显示磁盘空间的使用情况,包括文件系统的挂载点、总容量、已用空间、可用空间…...
大数据与人工智能的未来已来
大数据与人工智能的定义 大数据: 大数据指的是规模庞大、复杂性高、多样性丰富的数据集合。这些数据通常无法通过传统的数据库管理工具来捕获、存储、管理和处理。大数据的特点包括"3V": 大量(Volume):大数…...
【AI视野·今日Robot 机器人论文速览 第四十一期】Tue, 26 Sep 2023
AI视野今日CS.Robotics 机器人学论文速览 Tue, 26 Sep 2023 Totally 73 papers 👉上期速览✈更多精彩请移步主页 Daily Robotics Papers Extreme Parkour with Legged Robots Authors Xuxin Cheng, Kexin Shi, Ananye Agarwal, Deepak Pathak人类可以通过以高度动态…...
[NOIP2012 提高组] 开车旅行
[NOIP2012 提高组] 开车旅行 题目描述 小 A \text{A} A 和小 B \text{B} B 决定利用假期外出旅行,他们将想去的城市从 $1 $ 到 n n n 编号,且编号较小的城市在编号较大的城市的西边,已知各个城市的海拔高度互不相同,记城市 …...
数据库设计流程---以案例熟悉
案例名字:宠物商店系统 课程来源:点击跳转 信息->概念模型->数据模型->数据库结构模型 将现实世界中的信息转换为信息世界的概念模型(E-R模型) 业务逻辑 构建 E-R 图 确定三个实体:用户、商品、订单...
Miniconda创建paddlepaddle环境
1、conda env list 2、conda create --name paddle_env python3.8 --channel https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ 3、activate paddle_env 4、python -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple 5、pip install "p…...
OpenLayers 可视化之热力图
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 热力图(Heatmap)又叫热点图,是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...
SkyWalking 10.2.0 SWCK 配置过程
SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外,K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案,全安装在K8S群集中。 具体可参…...
蓝桥杯 2024 15届国赛 A组 儿童节快乐
P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡,轻快的音乐在耳边持续回荡,小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下,六一来了。 今天是六一儿童节,小蓝老师为了让大家在节…...
Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...
IT供电系统绝缘监测及故障定位解决方案
随着新能源的快速发展,光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域,IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选,但在长期运行中,例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
Java 二维码
Java 二维码 **技术:**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...
【7色560页】职场可视化逻辑图高级数据分析PPT模版
7种色调职场工作汇报PPT,橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版:职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...
探索Selenium:自动化测试的神奇钥匙
目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...
2025年- H71-Lc179--39.组合总和(回溯,组合)--Java版
1.题目描述 2.思路 当前的元素可以重复使用。 (1)确定回溯算法函数的参数和返回值(一般是void类型) (2)因为是用递归实现的,所以我们要确定终止条件 (3)单层搜索逻辑 二…...
