当前位置: 首页 > news >正文

卫星图像应用 - 洪水检测 使用DALI进行数据预处理

这篇文章是上一篇的延申。

运行环境:Google Colab

1. 当今的深度学习应用包含由许多串行运算组成的、复杂的多阶段数据处理流水线,仅依靠 CPU 处理这些流水线已成为限制性能和可扩展性的瓶颈。

2. DALI 是一个用于加载和预处理数据的库,可使深度学习应用加速。它提供了一系列高度优化的模块,用于加载和处理图像、视频和音频数据。DALI 通过将数据预处理卸载到 GPU 来解决 CPU 瓶颈问题。

!nvidia-smi
  • 检查CUDA版本
    在这里插入图片描述
!pip install --extra-index-url https://developer.download.nvidia.com/compute/redist --upgrade nvidia-dali-cuda120
  • 安装相应的nvidia.dali库
# import dependencies
from nvidia.dali.pipeline import Pipeline
from nvidia.dali import pipeline_def
import nvidia.dali.fn as fn
import nvidia.dali.types as typesimport warnings
# 在代码执行期间禁用警告信息的显示
warnings.filterwarnings("ignore")
  • 导入需要的库。
batch_size=4@pipeline_def
def simple_pipeline():# use fn.readers.file to read encoded images and labels from the hard drivepngs, labels=fn.readers.file(file_root=image_dir)# use the fn.decoders.image operation to decode images from png to RGBimages=fn.decoders.image(pngs, device='mixed')# specify which of the intermediate variables should be returned as the outputs of the pipelinereturn images, labels
  • @pipeline_def 是一个装饰器(decorator),它用于标记下面的函数 simple_pipeline,以告诉 DALI 库这是一个数据处理流水线的定义。
  • 使用 DALI 库中的 fn.decoders.image 操作对图像数据进行解码。这里假设输入图像是 PNG 格式,而 fn.decoders.image 操作将其解码为 RGB 格式的图像。device=‘mixed’ 表示解码操作在 GPU 上执行。

3. 创建了一个数据处理流水线对象

# create and build pipeline
pipe=simple_pipeline(batch_size=batch_size, num_threads=4, device_id=0)
pipe.build()
  • num_threads=4 表示在流水线中使用的线程数量。这里设置为4,意味着在数据加载和预处理过程中会使用4个并行的线程,以提高数据处理的效率。
  • device_id=0 表示在哪个设备上执行数据处理操作。这里设置为0,表示在第一个设备(通常是CPU)上执行操作。
  • 调用 build 方法来准备流水线以开始数据加载和预处理的工作。

4. 验证数据处理流水线的输出是否包含稠密张量。稠密张量通常用于深度学习模型的输入数据,因此检查它们是否是稠密的可以帮助确保数据准备工作正确完成。如果输出是稠密张量,那么它们可以直接用于模型的训练和推理。

# run the pipeline
simple_pipe_output=pipe.run()images, labels=simple_pipe_output
print("Images is_dense_tensor: " + str(images.is_dense_tensor()))
print("Labels is_dense_tensor: " + str(labels.is_dense_tensor()))
  • 调用之前创建的 pipe 对象的 run 方法,用于执行数据处理流水线。执行流水线将开始加载和处理数据,生成流水线的输出结果。
  • 将流水线的输出结果 simple_pipe_output 解包成两个变量:images 和 labels。通常,在数据处理流水线中,simple_pipe_output 是一个包含了单个批次数据的元组。

5. 定义用于显示图像批次的函数

# define a function display images
def show_images(image_batch):columns=4rows=1# create plot# 窗口的宽度是固定的,而高度根据列数和行数来自动计算,以确保图像按照指定的布局显示。fig=plt.figure(figsize=(15, (15 // columns) * rows))gs=gridspec.GridSpec(rows, columns)for idx in range(rows*columns):plt.subplot(gs[idx])plt.axis("off")plt.imshow(image_batch.at(idx))plt.tight_layout()show_images(images.as_cpu())
  • 使用 gridspec.GridSpec 创建一个子图的网格布局。
  • 使用 plt.subplot 创建一个子图,并根据 gs 中的索引 idx 来选择子图的位置。
  • plt.imshow 显示图像,其中 image_batch.at(idx) 表示从图像批次中获取第 idx 张图像并在子图中显示。
  • 调用 plt.tight_layout(),以确保图像布局紧凑,避免重叠或不适当的间距。

在这里插入图片描述

6. 深度学习模型需要使用大量数据进行训练才能获得准确的结果。DALI 不仅能读取磁盘中的图像并将其批处理为张量,它还能在这些图像上执行各种增强,以改进深度学习训练结果。

7. 对图像和掩码数据执行一系列的增强操作,包括裁剪和水平翻转,以增加数据的多样性和模型的鲁棒性

import random@pipeline_def
def augmentation_pipeline():# use fn.readers.file to read encoded images and labels from the hard driveimage_pngs, _=fn.readers.file(file_root=image_dir)# use the fn.decoders.image operation to decode images from png to RGBimages=fn.decoders.image(image_pngs, device='cpu')# the same augmentation needs to be performed on the associated masksmask_pngs, _=fn.readers.file(file_root=mask_dir)masks=fn.decoders.image(mask_pngs, device='cpu')image_size=512roi_size=image_size*.5roi_start_x=image_size*random.uniform(0, 0.5)roi_start_y=image_size*random.uniform(0, 0.5)# use fn.resize to investigate an roi, region of interestresized_images=fn.resize(images, size=[512, 512], roi_start=[roi_start_x, roi_start_y], roi_end=[roi_start_x+roi_size, roi_start_y+roi_size])resized_masks=fn.resize(masks, size=[512, 512], roi_start=[roi_start_x, roi_start_y], roi_end=[roi_start_x+roi_size, roi_start_y+roi_size])# use fn.resize to flip the imageflipped_images=fn.resize(images, size=[-512, -512])flipped_masks=fn.resize(masks, size=[-512, -512])return images, resized_images, flipped_images, masks, resized_masks, flipped_masks
  • 使用 DALI 库中的 fn.readers.file 操作从硬盘上的指定目录(image_dir)中读取图像数据。image_pngs 变量将包含图像数据,而 _ 用于占位,表示不使用标签数据。
  • roi_size 表示感兴趣区域(Region of Interest,ROI)的大小,这里设置为图像大小的一半。
  • 使用 fn.resize 操作对图像和掩码进行裁剪,仅保留感兴趣区域(ROI)。size=[512, 512] 参数指定了裁剪后的图像大小,而 roi_start 和 roi_end 参数指定了感兴趣区域的起始和结束位置,从而对图像进行裁剪。
  • 使用 fn.resize 操作对图像和掩码进行水平翻转。通过将 size 参数设置为负数,可以实现水平翻转操作。
# 创建数据增强的数据处理流水线
pipe=augmentation_pipeline(batch_size=batch_size, num_threads=4, device_id=0)
# 构建数据处理流水线
pipe.build()
# 执行数据处理流水线
augmentation_pipe_output=pipe.run()
# define a function display images
augmentation=['original', 'resized', 'flipped']
def show_augmented_images(pipe_output):image_batch, resized_image_batch, flipped_image_batch, mask_batch, resized_mask_batch, flipped_mask_batch=pipe_outputcolumns=6rows=batch_size# create plotfig=plt.figure(figsize=(15, (15 // columns) * rows))gs=gridspec.GridSpec(rows, columns)grid_data=[image_batch, resized_image_batch, flipped_image_batch, mask_batch, resized_mask_batch, flipped_mask_batch]# grid 变量用于追踪要显示的图像数据在 grid_data 列表中的索引。grid=0for row_idx in range(rows): for col_idx in range(columns): plt.subplot(gs[grid])plt.axis('off')plt.title(augmentation[col_idx%3])plt.imshow(grid_data[col_idx].at(row_idx))grid+=1plt.tight_layout()
  • 使用 gridspec.GridSpec 创建一个子图的网格布局。rows 和 columns 参数指定了网格的行数和列数,以便在图形界面上排列图像。
  • 使用 plt.subplot 创建一个子图,并根据 gs 中的索引 grid 来选择子图的位置。
  • grid_data[col_idx].at(row_idx) 表示从 grid_data 列表中获取要显示的图像,并在子图中显示。
show_augmented_images(augmentation_pipe_output)

在这里插入图片描述

show_augmented_images(pipe.run())
  • 针对下一批数据运行流水线

在这里插入图片描述

8. 旋转每个图像(以随机角度)来执行额外的数据增强

@pipeline_def
def rotate_pipeline():images, _=fn.readers.file(file_root=image_dir)masks, _=fn.readers.file(file_root=mask_dir)images=fn.decoders.image(images, device='cpu')masks=fn.decoders.image(masks, device='cpu')angle=fn.random.uniform(range=(-30.0, 30.0))rotated_images = fn.rotate(images.gpu(), angle=angle, fill_value=0, keep_size=True, device='gpu')rotated_masks = fn.rotate(masks.gpu(), angle=angle, fill_value=0, keep_size=True, device='gpu')return rotated_images, rotated_masks
  • 使用 random.uniform 并使用 rotate 进行旋转,由此生成随机角度。
  • 创建一个使用 GPU 的流水线来执行数据增强。
  • 将设备参数设为 gpu,并通过调用 .gpu() 确保其输入传输到 GPU。

9. rotate_pipeline 会在 GPU 上执行旋转

pipe=rotate_pipeline(batch_size=batch_size, num_threads=4, device_id=0)
pipe.build()
rotate_pipe_output=pipe.run()
  • 生成的图像会分配到 GPU 显存中。
  • 模型需要 GPU 显存中用于训练的数据。
# define a function display images
def show_rotate_images(pipe_output):image_batch, rotated_batch=pipe_outputcolumns=batch_sizerows=2fig=plt.figure(figsize=(15, (15 // columns) * rows))gs=gridspec.GridSpec(rows, columns)grid_data=[image_batch.as_cpu(), rotated_batch.as_cpu()]grid=0for row_idx in range(rows): for col_idx in range(columns): plt.subplot(gs[grid])plt.axis('off')plt.imshow(grid_data[row_idx].at(col_idx))grid+=1plt.tight_layout()
  • 只要想在运行流水线之后将数据复制回 CPU 内存,都可通过针对 Pipeline.run() 返回的对象调用 as_cpu() 来实现。
show_rotate_images(rotate_pipe_output)

在这里插入图片描述

相关文章:

卫星图像应用 - 洪水检测 使用DALI进行数据预处理

这篇文章是上一篇的延申。 运行环境:Google Colab 1. 当今的深度学习应用包含由许多串行运算组成的、复杂的多阶段数据处理流水线,仅依靠 CPU 处理这些流水线已成为限制性能和可扩展性的瓶颈。 2. DALI 是一个用于加载和预处理数据的库,可…...

为什么字节大量用GO而不是Java?

见字如面,我是军哥。 我看很多程序员对字节编程语言选型很好奇,为此我还特地问了在字节的两位4-1的技术大佬朋友,然后加上自己的思考,总结了一下就以下 2 个原因: 1、 选型上没有历史包袱 字节的早期的程序员大多来自于…...

Hive SQL初级练习(30题)

前言 Hive 的重要性不必多说,离线批处理的王者,Hive 用来做数据分析,SQL 基础必须十分牢固。 环境准备 建表语句 这里建4张表,下面的练习题都用这些数据。 -- 创建学生表 create table if not exists student_info(stu_id st…...

NSSCTF做题(6)

[HCTF 2018]Warmup 查看源代码得到 开始代码审计 <?php highlight_file(__FILE__); class emmm { public static function checkFile(&$page) { $whitelist ["source">"source.php","hint"…...

公众号商城小程序的作用是什么

公众号是微信平台重要的生态体系之一&#xff0c;它可以与其它体系连接实现多种效果&#xff0c;同时公众号内容创作者非常多&#xff0c;个人或企业商家等&#xff0c;会通过公众号分享信息或获得收益等&#xff0c;而当商家需要在微信做私域经营或想要转化粉丝、售卖产品时就…...

关于 FOCA

目录 注意团队成员成品官网项目社区 版本信息致谢 注意 此文章会随时更新&#xff0c;最好收藏起来&#xff0c;总对你有好处。我们不定时发布一些 IT 内容&#xff0c;所以请关注我们。 此账号为 FOCA 唯一的官方账号&#xff0c;请勿轻易相信其他账号所发布内容。 团队 全…...

TVP专家谈腾讯云 Cloud Studio:开启云端开发新篇章

导语 | 近日&#xff0c;由腾讯云 TVP 团队倾力打造的 TVP 吐槽大会第六期「腾讯云 Cloud Studio」专场圆满落幕&#xff0c;6 位资深的 TVP 专家深度体验腾讯云 Cloud Studio 产品&#xff0c;提出了直击痛点的意见与建议&#xff0c;同时也充分肯定了腾讯云 Cloud Studio 的实…...

2023-09-27 Cmake 编译 OpenCV+Contrib 源码通用设置

Cmake 编译 OpenCV 通用设置 特点&#xff1a; 包括 Contrib 模块关闭了 Example、Test、OpenCV_AppLinux、Windows 均只生成 OpenCV_World 需要注意&#xff1a; 每次把 Cmake 缓存清空&#xff0c;否则&#xff0c;Install 路径可能被设置为默认路径Windows 需要注意编译…...

ACGAN

CGAN通过在生成器和判别器中均使用标签信息进行训练&#xff0c;不仅能产生特定标签的数据&#xff0c;还能够提高生成数据的质量&#xff1b;SGAN&#xff08;Semi-Supervised GAN)通过使判别器/分类器重建标签信息来提高生成数据的质量。既然这两种思路都可以提高生成数据的质…...

模块化CSS

1、什么是模块化CSS 模块化CSS是一种将CSS样式表的规则和样式定义封装到模块或组件级别的方法&#xff0c;以便于更好地管理、维护和组织样式代码。这种方法通过将样式与特定的HTML元素或组件相关联&#xff0c;提供了一种更具可维护性、可复用性和隔离性的方式来处理样式。简单…...

意大利储能公司【Energy Dome】完成1500万欧元融资

来源&#xff1a;猛兽财经 作者&#xff1a;猛兽财经 猛兽财经获悉&#xff0c;总部位于意大利米兰的储能公司Energy Dome今日宣布已完成1500万欧元B轮融资。 本轮融资完成后&#xff0c;Energy Dome的融资总额已经达到了5500万欧元&#xff0c;本轮融资的参与者包括阿曼创新发…...

【Java 进阶篇】JDBC Connection详解:连接到数据库的关键

在Java中&#xff0c;要与数据库进行交互&#xff0c;需要使用Java数据库连接&#xff08;JDBC&#xff09;。JDBC允许您连接到不同类型的数据库&#xff0c;并执行SQL查询、插入、更新和删除操作。在JDBC中&#xff0c;连接数据库是一个重要的步骤&#xff0c;而Connection对象…...

vue-cli项目打包体积太大,服务器网速也拉胯(100kb/s),客户打开网站需要等十几秒!!! 尝试cdn优化方案

一、首先用插件webpack-bundle-analyzer查看自己各个包的体积 插件用法参考之前博客 vue-cli项目中&#xff0c;使用webpack-bundle-analyzer进行模块分析&#xff0c;查看各个模块的体积&#xff0c;方便后期代码优化 二、发现有几个插件体积较大&#xff0c;有改成CDN引用的…...

【优秀学员统计】python实现-附ChatGPT解析

1.题目 优秀学员统计 知识点排序统计编程基础 时间限制: 1s 空间限制: 256MB 限定语言:不限 题目描述: 公司某部门软件教导团正在组织新员工每日打卡学习活动,他们开展这项学习活动已经一个月了,所以想统计下这个月优秀的打卡员工。每个员工会对应一个id,每天的打卡记录记录…...

餐饮外卖配送小程序商城的作用是什么?

餐饮是支撑市场的主要行业之一&#xff0c;其市场规模很大&#xff0c;从业商家从大到小不计其数&#xff0c;对众商家来说&#xff0c;无论门店大小都希望不断生意增长&#xff0c;但在实际发展中却会面对不少痛点&#xff1b; 餐饮很适合线上经营&#xff0c;无论第三方外卖…...

【QT】使用toBase64方法将.txt文件的明文变为非明文(类似加密)

目录 0.环境 1.背景 2.详细代码 2.1 .h主要代码 2.2 .cpp主要代码&#xff0c;主要实现上述的四个方法 0.环境 windows 11 64位 Qt Creator 4.13.1 1.背景 项目需求&#xff1a;我们项目中有配置文件&#xff08;类似.txt&#xff0c;但不是这个格式&#xff0c;本文以…...

《QDebug 2023年9月》

一、Qt Widgets 问题交流 1.Qt 程序在 Windows 上以管理员权限运行时无法响应拖放&#xff08;Drop&#xff09; 无论是 Widget 还是 QML 程序&#xff0c;以管理员权限运行时&#xff0c;都无法响应拖放操作。可以右键管理员权限打开 Qt Creator&#xff0c;然后丢个文本文件…...

C++使用高斯模糊处理图像

C使用高斯模糊处理图像 cv::GaussianBlur 是 OpenCV 中用于对图像进行高斯模糊处理的函数。高斯模糊是一种常用的图像滤波方法&#xff0c;它可以减少图像中的噪声&#xff0c;并平滑图像以降低细节级别。 void cv::GaussianBlur(const cv::Mat& src, cv::Mat& dst, …...

多维时序 | MATLAB实现PSO-BP多变量时间序列预测(粒子群优化BP神经网络)

多维时序 | MATLAB实现PSO-BP多变量时间序列预测(粒子群优化BP神经网络) 目录 多维时序 | MATLAB实现PSO-BP多变量时间序列预测(粒子群优化BP神经网络)效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现PSO-BP粒子群优化BP神经网络多变量时间序列预测&#xff…...

LeetCode 283. 移动零

移动零 问题描述 LeetCode 283. 移动零 给定一个数组 nums&#xff0c;编写一个函数将所有 0 移动到数组的末尾&#xff0c;同时保持非零元素的相对顺序。 请注意&#xff0c;必须在不复制数组的情况下原地对数组进行操作。 解决思路 为了将所有 0 移动到数组的末尾&#…...

idea大量爆红问题解决

问题描述 在学习和工作中&#xff0c;idea是程序员不可缺少的一个工具&#xff0c;但是突然在有些时候就会出现大量爆红的问题&#xff0c;发现无法跳转&#xff0c;无论是关机重启或者是替换root都无法解决 就是如上所展示的问题&#xff0c;但是程序依然可以启动。 问题解决…...

在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module

1、为什么要修改 CONNECT 报文&#xff1f; 多租户隔离&#xff1a;自动为接入设备追加租户前缀&#xff0c;后端按 ClientID 拆分队列。零代码鉴权&#xff1a;将入站用户名替换为 OAuth Access-Token&#xff0c;后端 Broker 统一校验。灰度发布&#xff1a;根据 IP/地理位写…...

el-switch文字内置

el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...

2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面

代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口&#xff08;适配服务端返回 Token&#xff09; export const login async (code, avatar) > {const res await http…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式&#xff1a;dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一&#xff0c;腐蚀跟膨胀属于反向操作&#xff0c;膨胀是把图像图像变大&#xff0c;而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

短视频矩阵系统文案创作功能开发实践,定制化开发

在短视频行业迅猛发展的当下&#xff0c;企业和个人创作者为了扩大影响力、提升传播效果&#xff0c;纷纷采用短视频矩阵运营策略&#xff0c;同时管理多个平台、多个账号的内容发布。然而&#xff0c;频繁的文案创作需求让运营者疲于应对&#xff0c;如何高效产出高质量文案成…...

【C++特殊工具与技术】优化内存分配(一):C++中的内存分配

目录 一、C 内存的基本概念​ 1.1 内存的物理与逻辑结构​ 1.2 C 程序的内存区域划分​ 二、栈内存分配​ 2.1 栈内存的特点​ 2.2 栈内存分配示例​ 三、堆内存分配​ 3.1 new和delete操作符​ 4.2 内存泄漏与悬空指针问题​ 4.3 new和delete的重载​ 四、智能指针…...

JS手写代码篇----使用Promise封装AJAX请求

15、使用Promise封装AJAX请求 promise就有reject和resolve了&#xff0c;就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...