Pytorch基础:Tensor的reshape方法
在Pytorch中,reshape是Tensor的一个重要方法,它与Numpy中的reshape类似,用于返回一个改变了形状但数据和数据顺序和原来一致的新Tensor对象。注意:此时返回的数据对象并不一定是新的,这取决于应用此方法的Tensor是否是连续的。
reshape方法的语法如下所示:
Tensor.reshape(*shape) → Tensor
shape (tuple of ints or int...) - the desired shape
reshape的用法如下所示:
import torch
# 创建一个张量
x = torch.randn(3, 4)
tensor([[ 0.1961, -0.9038, 0.9196, -1.1851],[ 1.1321, 0.3153, 0.3485, 0.7977],[-0.5279, 0.2062, -0.4224, -0.3993]])# 使用reshape方法将其重新塑造为2行6列的形状
y = x.reshape(2, 6)
y = x.reshape((2,6)) #两种形式均可,y = x.reshape([2,6])也可
tensor([[ 0.1961, -0.9038, 0.9196, -1.1851, 1.1321, 0.3153],[ 0.3485, 0.7977, -0.5279, 0.2062, -0.4224, -0.3993]])
可以看到,给出的参数既可以是多个整数(其中每个整数代表一个维度的大小,而整数的数量代表维度的数量),也可以是一个元组或是列表(其中每个元素代表一个维度的大小,而元素数量代表维度的数量)。而且reshape不改变Tensor中数据的排列顺序(指的是从上到下从左到右遍历的顺序),只改变形状,这也就对reshape各维度大小的乘积有要求,要与原Tensor一致。在上例中即3*4=2*6。
另外reshape还有一个trick,即某一维的实参可以是-1,此时会自动根据原Tensor大小和给出的其他维度参数的大小,推断出这一维度的大小,举例如下:
import torch
# 创建一个张量
x = torch.randn(3, 4)
tensor([[ 0.1961, -0.9038, 0.9196, -1.1851],[ 1.1321, 0.3153, 0.3485, 0.7977],[-0.5279, 0.2062, -0.4224, -0.3993]])# 使用reshape方法将其重新塑造为6行n列的形状,n为自动推断出的值
y = x.reshape(6, -1)
tensor([[ 0.1961, -0.9038],[ 0.9196, -1.1851],[ 1.1321, 0.3153],[ 0.3485, 0.7977],[-0.5279, 0.2062],[-0.4224, -0.3993]])# 使用reshape方法将其重新塑造为(2,2,n)的形状,n为自动推断出的值
y = x.reshape(2, 2, -1)
tensor([[[ 0.1961, -0.9038, 0.9196],[-1.1851, 1.1321, 0.3153]],[[ 0.3485, 0.7977, -0.5279],[ 0.2062, -0.4224, -0.3993]]])# 不能在两个维度都指定-1,这时无法推断出唯一结果
y = x.reshape(2, -1, -1)
Traceback (most recent call last):File "<stdin>", line 1, in <module>
RuntimeError: only one dimension can be inferred
除此之外,还可以使用torch.reshape()函数,这与使用reshape方式效果一致,torch.reshape()的语法如下所示。
torch.reshape(input, shape) → Tensor
input (Tensor) – the tensor to be reshaped
shape (tuple of python:int) – the new shapeimport torch
# 创建一个张量
x = torch.randn(3, 4)
tensor([[ 0.1961, -0.9038, 0.9196, -1.1851],[ 1.1321, 0.3153, 0.3485, 0.7977],[-0.5279, 0.2062, -0.4224, -0.3993]])# 使用reshape函数将其重新塑造为6行n列的形状,n为自动推断出的值
y = torch.reshape(x, (6, -1))
tensor([[ 0.1961, -0.9038],[ 0.9196, -1.1851],[ 1.1321, 0.3153],[ 0.3485, 0.7977],[-0.5279, 0.2062],[-0.4224, -0.3993]])
相关文章:
Pytorch基础:Tensor的reshape方法
在Pytorch中,reshape是Tensor的一个重要方法,它与Numpy中的reshape类似,用于返回一个改变了形状但数据和数据顺序和原来一致的新Tensor对象。注意:此时返回的数据对象并不一定是新的,这取决于应用此方法的Tensor是否是…...
【数据库——MySQL】(13)过程式对象程序设计——存储函数、错误处理以及事务管理
目录 1. 存储函数2. 存储函数的应用3. 错误处理4. 抛出异常5. 事务处理6. 事务隔离级7. 应用实例参考书籍 1. 存储函数 要 创建 存储函数,需要用到 CREATE 语句: CREATE FUNCTION 存储函数名([参数名 类型, ...])RETURNS 类型[存储函数体]注意࿱…...
Spring Boot的魔法:构建高性能Java应用
文章目录 Spring Boot:简化Java开发Spring Boot的性能优势1. 内嵌服务器2. 自动配置3. 起步依赖4. 缓存和优化5. 异步处理 实际示例:构建高性能的RESTful API总结 🎉欢迎来到架构设计专栏~Spring Boot的魔法:构建高性能Java应用 ☆…...
如何做好测试?(七)兼容性测试 (Compatibility Testing, CT)
1. 兼容性测试介绍 兼容性测试 (Compatibility Testing, CT)是一种软件测试方法,旨在验证应用程序在不同操作系统、浏览器、设备和网络环境下的正确运行和一致性。对于网上购物系统来说,兼容性测试非常重要,因为用户可能使用各种不同的设备和…...
经典循环神经网络(一)RNN及其在歌词数据集上的应用
经典循环神经网络(一)RNN及其在歌词数据集上的应用 1 RNN概述 在深度学习兴起之前,NLP领域一直是统计模型的天下,例如词对齐算法GIZA,统计机器翻译开源框架MOSES等等。在语言模型方向,n-gram是当时最为流行的语言模型方法。n-gr…...
docker+mysql+flask+redis+vue3+uwsgi+docker部署
首先拉取mysql的镜像,这里用的mysql5.7.6 docker pull mysql:5.7.6 镜像拉取完成后启动: docker run --name my-mysql -d -p 3306:3306 -v /usr/local/my-mysql/conf:/etc/mysql/conf.d -v /usr/local/my-mysql/data:/var/lib/mysql -e MYSQL_ROOT_PA…...
Spring boot接收zip包并获取其中excel文件的方法
1、问题 工作中遇到一个需求,接收一个zip包,读取其中的excel文件并处理,减少用户多次选择目录和文件的痛点,该zip包包含多级目录 2、依赖 需要用到apache的Workbook类来操作Excel,引入以下依赖 <dependency>&l…...
Ubuntu镜像源cn.arichinve.ubuntu.com不可用原因分析和解决
文章目录 Ubuntu查看系统版本Ubuntu更新系统不能更新Ubuntu查看APT更新源配置cn.archive.ubuntu.com已经自动跳转到清华镜像站Ubuntu变更镜像源地址备份原文件批量在VIM中变更 Ubuntu国内镜像站推荐推荐阅读 今天想要在Ubuntu环境下搭建一个测试环境,进入Ubuntu系统…...
Java基础面试,String,StringBuffer,StringBuilder区别以及使用场景
简单的几句 String是final修饰的,不可变,每次操作都会产生新的对象。StringBuffer和StringBuilder都是在原对象上进行操作StringBuffer是线程安全的,StringBuilder是线程不安全的。StringBuffer方法是被synchronized修饰的 所以在性能方面大…...
基于SpringBoot的高校学科竞赛平台
目录 前言 一、技术栈 二、系统功能介绍 竞赛题库管理 竞赛信息管理 晋级名单管理 往年成绩管理 参赛申请管理 三、核心代码 1、登录模块 2、文件上传模块 3、代码封装 前言 随着信息技术在管理上越来越深入而广泛的应用,管理信息系统的实施在技术上已逐步…...
excel如何让线条消失,直接设置网格即可,碰到不方便的地方优先百度,再采取蛮干
怎么将excel表格中的隐形线条去掉...
抖音短视频seo矩阵系统源代码开发系统架构及功能解析
短视频seo源码,短视频seo矩阵系统底层框架上支持了从ai视频混剪,视频批量原创产出,云存储批量视频制作,账号矩阵,视频一键分发,站内实现关键词、短视频批量搜索排名,数据统计分类多功能细节深度…...
在pycharm中弹出图后,需要关闭才会显示Process finished with exit code 0
在pycharm中弹出图后,需要关闭才会显示Process finished with exit code 0 在PyCharm中,当你运行一个Python程序并弹出一个图形窗口时,程序会等到图形窗口关闭后才会显示 “Process finished with exit code 0” 的消息。 这是 由于代码执行…...
【计算机网络笔记六】应用层(三)HTTP 的 Cookie、缓存控制、代理服务、短连接和长连接
HTTP 的 Cookie HTTP 的 Cookie 机制要用到两个字段:响应头字段 Set-Cookie 和请求头字段 Cookie。 Cookie 可以设置多个 key-value 对, 响应头中可以设置多个 Set-Cookie 字段,请求头Cookie后面可以设置多个键值对,用分号隔开&a…...
Vue中的数据分页与分页组件设计
Vue中的数据分页与分页组件设计 在前端开发中,数据分页是一个常见的需求,特别是当处理大量数据时。Vue作为一款流行的JavaScript框架,提供了强大的工具和生态系统来实现数据分页。本文将介绍如何在Vue中进行数据分页,以及如何设计…...
TCP串流场景剖析
在TCP(传输控制协议)中,串流场景指的是数据通过TCP连接以流(stream)的方式传输。TCP是一种可靠的、面向连接的传输协议,它将数据切分为多个报文段,通过网络传输,并在接收端进行重组&…...
Windows历史版本下载
1、微PE工具箱(非广告本人常用) 常用安装Windows系统的微PE工具 地址:https://www.wepe.com.cn/download.html 2、Windows系统下载地址(非微软官方) 地址:MSDN, 我告诉你 - 做一个安静的工具站 下载&…...
企业级磁盘阵列存储系统由硬到软全析
企业级磁盘阵列是由一组设备构成的存储系统,主要包括两种类型的设备,分别是控制器和扩展柜,其中控制器只有一台,扩展柜可以没有,也可以有多台。在EMC的Unity中分别称为DPE(Disk Processor Enclosure)和DAE(Disk Array Enclosure),在华为的OceanStor里面称为控制框和硬…...
V4L2 驱动架构介绍
V4L2 简介 Video for Linux two(Video4Linux2)简称 V4L2,是 V4L 的改进版。V4L2 是 linux操作系统下用于视频和音频数据采集设备的驱动框架,为驱动和应用程序提供了一套统一的接口规范。 在 Linux 下,所有外设都被看成一种特殊的文件…...
掌握这些技巧,让Excel批量数据清洗变得简单高效!
什么是数据清洗 数据清洗是指在数据处理过程中对原始数据进行筛选、转换和修正,以确保数据的准确性、一致性和完整性的过程。它是数据预处理的一部分,旨在处理和纠正可能存在的错误、缺失值、异常值和不一致性等数据质量问题。 为什么要数据清洗 Exce…...
通过Wrangler CLI在worker中创建数据库和表
官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...
postgresql|数据库|只读用户的创建和删除(备忘)
CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...
使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装
以下是基于 vant-ui(适配 Vue2 版本 )实现截图中照片上传预览、删除功能,并封装成可复用组件的完整代码,包含样式和逻辑实现,可直接在 Vue2 项目中使用: 1. 封装的图片上传组件 ImageUploader.vue <te…...
Matlab | matlab常用命令总结
常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...
从 GreenPlum 到镜舟数据库:杭银消费金融湖仓一体转型实践
作者:吴岐诗,杭银消费金融大数据应用开发工程师 本文整理自杭银消费金融大数据应用开发工程师在StarRocks Summit Asia 2024的分享 引言:融合数据湖与数仓的创新之路 在数字金融时代,数据已成为金融机构的核心竞争力。杭银消费金…...
Caliper 负载(Workload)详细解析
Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...
解决:Android studio 编译后报错\app\src\main\cpp\CMakeLists.txt‘ to exist
现象: android studio报错: [CXX1409] D:\GitLab\xxxxx\app.cxx\Debug\3f3w4y1i\arm64-v8a\android_gradle_build.json : expected buildFiles file ‘D:\GitLab\xxxxx\app\src\main\cpp\CMakeLists.txt’ to exist 解决: 不要动CMakeLists.…...
python爬虫——气象数据爬取
一、导入库与全局配置 python 运行 import json import datetime import time import requests from sqlalchemy import create_engine import csv import pandas as pd作用: 引入数据解析、网络请求、时间处理、数据库操作等所需库。requests:发送 …...
