当前位置: 首页 > news >正文

Pytorch基础:Tensor的reshape方法

        在Pytorch中,reshape是Tensor的一个重要方法,它与Numpy中的reshape类似,用于返回一个改变了形状但数据和数据顺序和原来一致的新Tensor对象。注意:此时返回的数据对象并不一定是新的,这取决于应用此方法的Tensor是否是连续的。

        reshape方法的语法如下所示:

Tensor.reshape(*shape) → Tensor
shape (tuple of ints or int...) - the desired shape

        reshape的用法如下所示:

import torch
# 创建一个张量
x = torch.randn(3, 4)
tensor([[ 0.1961, -0.9038,  0.9196, -1.1851],[ 1.1321,  0.3153,  0.3485,  0.7977],[-0.5279,  0.2062, -0.4224, -0.3993]])# 使用reshape方法将其重新塑造为2行6列的形状
y = x.reshape(2, 6) 
y = x.reshape((2,6)) #两种形式均可,y = x.reshape([2,6])也可
tensor([[ 0.1961, -0.9038,  0.9196, -1.1851,  1.1321,  0.3153],[ 0.3485,  0.7977, -0.5279,  0.2062, -0.4224, -0.3993]])

        可以看到,给出的参数既可以是多个整数(其中每个整数代表一个维度的大小,而整数的数量代表维度的数量),也可以是一个元组或是列表(其中每个元素代表一个维度的大小,而元素数量代表维度的数量)。而且reshape不改变Tensor中数据的排列顺序(指的是从上到下从左到右遍历的顺序),只改变形状,这也就对reshape各维度大小的乘积有要求,要与原Tensor一致。在上例中即3*4=2*6。

        另外reshape还有一个trick,即某一维的实参可以是-1,此时会自动根据原Tensor大小和给出的其他维度参数的大小,推断出这一维度的大小,举例如下:

import torch
# 创建一个张量
x = torch.randn(3, 4)
tensor([[ 0.1961, -0.9038,  0.9196, -1.1851],[ 1.1321,  0.3153,  0.3485,  0.7977],[-0.5279,  0.2062, -0.4224, -0.3993]])# 使用reshape方法将其重新塑造为6行n列的形状,n为自动推断出的值
y = x.reshape(6, -1)
tensor([[ 0.1961, -0.9038],[ 0.9196, -1.1851],[ 1.1321,  0.3153],[ 0.3485,  0.7977],[-0.5279,  0.2062],[-0.4224, -0.3993]])# 使用reshape方法将其重新塑造为(2,2,n)的形状,n为自动推断出的值
y = x.reshape(2, 2, -1)
tensor([[[ 0.1961, -0.9038,  0.9196],[-1.1851,  1.1321,  0.3153]],[[ 0.3485,  0.7977, -0.5279],[ 0.2062, -0.4224, -0.3993]]])# 不能在两个维度都指定-1,这时无法推断出唯一结果
y = x.reshape(2, -1, -1)
Traceback (most recent call last):File "<stdin>", line 1, in <module>
RuntimeError: only one dimension can be inferred

        除此之外,还可以使用torch.reshape()函数,这与使用reshape方式效果一致,torch.reshape()的语法如下所示。

torch.reshape(input, shape) → Tensor
input (Tensor) – the tensor to be reshaped
shape (tuple of python:int) – the new shapeimport torch
# 创建一个张量
x = torch.randn(3, 4)
tensor([[ 0.1961, -0.9038,  0.9196, -1.1851],[ 1.1321,  0.3153,  0.3485,  0.7977],[-0.5279,  0.2062, -0.4224, -0.3993]])# 使用reshape函数将其重新塑造为6行n列的形状,n为自动推断出的值
y = torch.reshape(x, (6, -1))
tensor([[ 0.1961, -0.9038],[ 0.9196, -1.1851],[ 1.1321,  0.3153],[ 0.3485,  0.7977],[-0.5279,  0.2062],[-0.4224, -0.3993]])

相关文章:

Pytorch基础:Tensor的reshape方法

在Pytorch中&#xff0c;reshape是Tensor的一个重要方法&#xff0c;它与Numpy中的reshape类似&#xff0c;用于返回一个改变了形状但数据和数据顺序和原来一致的新Tensor对象。注意&#xff1a;此时返回的数据对象并不一定是新的&#xff0c;这取决于应用此方法的Tensor是否是…...

【数据库——MySQL】(13)过程式对象程序设计——存储函数、错误处理以及事务管理

目录 1. 存储函数2. 存储函数的应用3. 错误处理4. 抛出异常5. 事务处理6. 事务隔离级7. 应用实例参考书籍 1. 存储函数 要 创建 存储函数&#xff0c;需要用到 CREATE 语句&#xff1a; CREATE FUNCTION 存储函数名([参数名 类型, ...])RETURNS 类型[存储函数体]注意&#xff1…...

Spring Boot的魔法:构建高性能Java应用

文章目录 Spring Boot&#xff1a;简化Java开发Spring Boot的性能优势1. 内嵌服务器2. 自动配置3. 起步依赖4. 缓存和优化5. 异步处理 实际示例&#xff1a;构建高性能的RESTful API总结 &#x1f389;欢迎来到架构设计专栏~Spring Boot的魔法&#xff1a;构建高性能Java应用 ☆…...

如何做好测试?(七)兼容性测试 (Compatibility Testing, CT)

1. 兼容性测试介绍 兼容性测试 (Compatibility Testing, CT)是一种软件测试方法&#xff0c;旨在验证应用程序在不同操作系统、浏览器、设备和网络环境下的正确运行和一致性。对于网上购物系统来说&#xff0c;兼容性测试非常重要&#xff0c;因为用户可能使用各种不同的设备和…...

经典循环神经网络(一)RNN及其在歌词数据集上的应用

经典循环神经网络(一)RNN及其在歌词数据集上的应用 1 RNN概述 在深度学习兴起之前&#xff0c;NLP领域一直是统计模型的天下&#xff0c;例如词对齐算法GIZA&#xff0c;统计机器翻译开源框架MOSES等等。在语言模型方向&#xff0c;n-gram是当时最为流行的语言模型方法。n-gr…...

docker+mysql+flask+redis+vue3+uwsgi+docker部署

首先拉取mysql的镜像&#xff0c;这里用的mysql5.7.6 docker pull mysql:5.7.6 镜像拉取完成后启动&#xff1a; docker run --name my-mysql -d -p 3306:3306 -v /usr/local/my-mysql/conf:/etc/mysql/conf.d -v /usr/local/my-mysql/data:/var/lib/mysql -e MYSQL_ROOT_PA…...

Spring boot接收zip包并获取其中excel文件的方法

1、问题 工作中遇到一个需求&#xff0c;接收一个zip包&#xff0c;读取其中的excel文件并处理&#xff0c;减少用户多次选择目录和文件的痛点&#xff0c;该zip包包含多级目录 2、依赖 需要用到apache的Workbook类来操作Excel&#xff0c;引入以下依赖 <dependency>&l…...

Ubuntu镜像源cn.arichinve.ubuntu.com不可用原因分析和解决

文章目录 Ubuntu查看系统版本Ubuntu更新系统不能更新Ubuntu查看APT更新源配置cn.archive.ubuntu.com已经自动跳转到清华镜像站Ubuntu变更镜像源地址备份原文件批量在VIM中变更 Ubuntu国内镜像站推荐推荐阅读 今天想要在Ubuntu环境下搭建一个测试环境&#xff0c;进入Ubuntu系统…...

Java基础面试,String,StringBuffer,StringBuilder区别以及使用场景

简单的几句 String是final修饰的&#xff0c;不可变&#xff0c;每次操作都会产生新的对象。StringBuffer和StringBuilder都是在原对象上进行操作StringBuffer是线程安全的&#xff0c;StringBuilder是线程不安全的。StringBuffer方法是被synchronized修饰的 所以在性能方面大…...

基于SpringBoot的高校学科竞赛平台

目录 前言 一、技术栈 二、系统功能介绍 竞赛题库管理 竞赛信息管理 晋级名单管理 往年成绩管理 参赛申请管理 三、核心代码 1、登录模块 2、文件上传模块 3、代码封装 前言 随着信息技术在管理上越来越深入而广泛的应用&#xff0c;管理信息系统的实施在技术上已逐步…...

excel如何让线条消失,直接设置网格即可,碰到不方便的地方优先百度,再采取蛮干

怎么将excel表格中的隐形线条去掉...

抖音短视频seo矩阵系统源代码开发系统架构及功能解析

短视频seo源码&#xff0c;短视频seo矩阵系统底层框架上支持了从ai视频混剪&#xff0c;视频批量原创产出&#xff0c;云存储批量视频制作&#xff0c;账号矩阵&#xff0c;视频一键分发&#xff0c;站内实现关键词、短视频批量搜索排名&#xff0c;数据统计分类多功能细节深度…...

在pycharm中弹出图后,需要关闭才会显示Process finished with exit code 0

在pycharm中弹出图后&#xff0c;需要关闭才会显示Process finished with exit code 0 在PyCharm中&#xff0c;当你运行一个Python程序并弹出一个图形窗口时&#xff0c;程序会等到图形窗口关闭后才会显示 “Process finished with exit code 0” 的消息。 这是 由于代码执行…...

【计算机网络笔记六】应用层(三)HTTP 的 Cookie、缓存控制、代理服务、短连接和长连接

HTTP 的 Cookie HTTP 的 Cookie 机制要用到两个字段&#xff1a;响应头字段 Set-Cookie 和请求头字段 Cookie。 Cookie 可以设置多个 key-value 对&#xff0c; 响应头中可以设置多个 Set-Cookie 字段&#xff0c;请求头Cookie后面可以设置多个键值对&#xff0c;用分号隔开&a…...

Vue中的数据分页与分页组件设计

Vue中的数据分页与分页组件设计 在前端开发中&#xff0c;数据分页是一个常见的需求&#xff0c;特别是当处理大量数据时。Vue作为一款流行的JavaScript框架&#xff0c;提供了强大的工具和生态系统来实现数据分页。本文将介绍如何在Vue中进行数据分页&#xff0c;以及如何设计…...

TCP串流场景剖析

在TCP&#xff08;传输控制协议&#xff09;中&#xff0c;串流场景指的是数据通过TCP连接以流&#xff08;stream&#xff09;的方式传输。TCP是一种可靠的、面向连接的传输协议&#xff0c;它将数据切分为多个报文段&#xff0c;通过网络传输&#xff0c;并在接收端进行重组&…...

Windows历史版本下载

1、微PE工具箱&#xff08;非广告本人常用&#xff09; 常用安装Windows系统的微PE工具 地址&#xff1a;https://www.wepe.com.cn/download.html 2、Windows系统下载地址&#xff08;非微软官方&#xff09; 地址&#xff1a;MSDN, 我告诉你 - 做一个安静的工具站 下载&…...

企业级磁盘阵列存储系统由硬到软全析

企业级磁盘阵列是由一组设备构成的存储系统,主要包括两种类型的设备,分别是控制器和扩展柜,其中控制器只有一台,扩展柜可以没有,也可以有多台。在EMC的Unity中分别称为DPE(Disk Processor Enclosure)和DAE(Disk Array Enclosure),在华为的OceanStor里面称为控制框和硬…...

V4L2 驱动架构介绍

V4L2 简介 Video for Linux two(Video4Linux2)简称 V4L2&#xff0c;是 V4L 的改进版。V4L2 是 linux操作系统下用于视频和音频数据采集设备的驱动框架&#xff0c;为驱动和应用程序提供了一套统一的接口规范。 在 Linux 下&#xff0c;所有外设都被看成一种特殊的文件&#xf…...

掌握这些技巧,让Excel批量数据清洗变得简单高效!

什么是数据清洗 数据清洗是指在数据处理过程中对原始数据进行筛选、转换和修正&#xff0c;以确保数据的准确性、一致性和完整性的过程。它是数据预处理的一部分&#xff0c;旨在处理和纠正可能存在的错误、缺失值、异常值和不一致性等数据质量问题。 为什么要数据清洗 Exce…...

css实现圆环展示百分比,根据值动态展示所占比例

代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告&#xff08;肿瘤大小、血液指标&#xff09;&#xff0c;你需要做出一个**决定性判断**&#xff1a;恶性还是良性&#xff1f;这种“非黑即白”的抉择&#xff0c;正是**逻辑回归&#xff08;Logistic Regression&#xff09;** 的战场&a…...

连锁超市冷库节能解决方案:如何实现超市降本增效

在连锁超市冷库运营中&#xff0c;高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术&#xff0c;实现年省电费15%-60%&#xff0c;且不改动原有装备、安装快捷、…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候&#xff0c;写过一篇简单实现&#xff0c;后期随着对该模型的深入研究&#xff0c;本次记录涉及到prophet 的公式以及参数调优&#xff0c;从公式可以更直观…...

三体问题详解

从物理学角度&#xff0c;三体问题之所以不稳定&#xff0c;是因为三个天体在万有引力作用下相互作用&#xff0c;形成一个非线性耦合系统。我们可以从牛顿经典力学出发&#xff0c;列出具体的运动方程&#xff0c;并说明为何这个系统本质上是混沌的&#xff0c;无法得到一般解…...

鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/

使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题&#xff1a;docker pull 失败 网络不同&#xff0c;需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...

USB Over IP专用硬件的5个特点

USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中&#xff0c;从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备&#xff08;如专用硬件设备&#xff09;&#xff0c;从而消除了直接物理连接的需要。USB over IP的…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)

前言&#xff1a; 最近在做行为检测相关的模型&#xff0c;用的是时空图卷积网络&#xff08;STGCN&#xff09;&#xff0c;但原有kinetic-400数据集数据质量较低&#xff0c;需要进行细粒度的标注&#xff0c;同时粗略搜了下已有开源工具基本都集中于图像分割这块&#xff0c…...

为什么要创建 Vue 实例

核心原因:Vue 需要一个「控制中心」来驱动整个应用 你可以把 Vue 实例想象成你应用的**「大脑」或「引擎」。它负责协调模板、数据、逻辑和行为,将它们变成一个活的、可交互的应用**。没有这个实例,你的代码只是一堆静态的 HTML、JavaScript 变量和函数,无法「活」起来。 …...

WebRTC从入门到实践 - 零基础教程

WebRTC从入门到实践 - 零基础教程 目录 WebRTC简介 基础概念 工作原理 开发环境搭建 基础实践 三个实战案例 常见问题解答 1. WebRTC简介 1.1 什么是WebRTC&#xff1f; WebRTC&#xff08;Web Real-Time Communication&#xff09;是一个支持网页浏览器进行实时语音…...