当前位置: 首页 > news >正文

EM@坐标@函数@图象的对称和翻折变换

abstract

  • 坐标@函数@图象的对称和翻折变换

翻折变换

关于坐标轴翻折

  • 此处我们通过研究图象上的点来间接图象变换,设图象的方程为 y = f ( x ) y=f(x) y=f(x), f ( x ) f(x) f(x)的定义域为 D f D_f Df
f ( − x ) , f ( x ) f(-x),f(x) f(x),f(x)
  • 函数 f ( − x ) f(-x) f(x)可以看作是函数 u = − x u=-x u=x y = f ( u ) y=f(u) y=f(u)复合而成的函数
    • x ∈ D u = R x\in{D_u}=\mathbb{R} xDu=R
  • 设函数 f ( x ) f(x) f(x)的定义域为 D f {D_f} Df,对于 g ( x ) = f ( − x ) g(x)=f(-x) g(x)=f(x), − x ∈ D f -x\in{D_f} xDf,即 x ∈ − D f x\in{-D_f} xDf或作 D g = − D f D_g=-D_f Dg=Df(表示 f , g f,g f,g的定义域关于原点对称)
  • a ∈ D f a\in{D_f} aDf,在 x = a x=a x=a处,可以取函数 f ( x ) f(x) f(x)上的点 A ( a , f ( a ) ) A(a,f(a)) A(a,f(a));
  • − a ∈ D g -a\in{D_g} aDg, g ( x ) g(x) g(x)上一定存在点 B ( − a , f ( a ) ) B(-a,f(a)) B(a,f(a));
  • 显然 A , B A,B A,B关于 y y y轴对称,对定义域内所有 x x x对应的点 ( x , f ( x ) ) (x,f(x)) (x,f(x)) ( x , f ( − x ) ) (x,f(-x)) (x,f(x))关于y轴对称
  • 从而 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)关于 y y y轴对称,即 f ( x ) , f ( − x ) f(x),f(-x) f(x),f(x)关于 y y y轴对称
  • 例如:
    • f ( x ) = sin ⁡ ( x ) f(x)=\sin(x) f(x)=sin(x),则 f ( − x ) = sin ⁡ ( − x ) = − sin ⁡ x f(-x)=\sin(-x)=-\sin{x} f(x)=sin(x)=sinx f ( x ) = sin ⁡ ( x ) f(x)=\sin(x) f(x)=sin(x)关于 y y y轴对称
    • 对于 f ( x ) = cos ⁡ x f(x)=\cos{x} f(x)=cosx, f ( − x ) = cos ⁡ ( − x ) f(-x)=\cos{(-x)} f(x)=cos(x)= cos ⁡ x \cos{x} cosx, f ( − x ) , f ( x ) f(-x),f(x) f(x),f(x)关于 y y y轴对称,即函数 cos ⁡ x \cos{x} cosx自身关于 y y y轴对称
− f ( x ) , f ( x ) -f(x),f(x) f(x),f(x)
  • 和上面的分析类似,取点分析:若函数 f ( x ) f(x) f(x),上存在 A ( a , f ( a ) ) A(a,f(a)) A(a,f(a)),则函数 − f ( x ) -f(x) f(x)上一定相应地存在 B ( a , − f ( a ) ) B(a,-f(a)) B(a,f(a))
  • 显然两点关于 x x x轴对称,而 x x x是定义域内的任意点,故而 − f ( x ) -f(x) f(x) f ( x ) f(x) f(x)关于 x x x轴对称

偶函数@奇函数

  • 偶函数:若函数 f ( x ) f(x) f(x)的定义域关于原点对称且满足 f ( − x ) = f ( x ) f(-x)=f(x) f(x)=f(x),则函数 f ( x ) f(x) f(x)是偶函数,显然 f ( x ) f(x) f(x)关于 y y y轴对称
    • f ( − x ) = f ( x ) f(-x)=f(x) f(x)=f(x),那么 f ( − x ) , f ( x ) f(-x),f(x) f(x),f(x)关于 y y y轴对称就变成了 f ( x ) , f ( x ) f(x),f(x) f(x),f(x)关于 y y y轴对称( f ( x ) f(x) f(x) f ( − x ) f(-x) f(x)重合),即 f ( x ) f(x) f(x)关于 y y y轴对称
  • 奇函数:若函数 f ( x ) f(x) f(x)的定义域关于原点对称且满足 f ( − x ) = − f ( x ) f(-x)=-f(x) f(x)=f(x),则函数 f ( x ) f(x) f(x)是奇函数,显然 f ( x ) f(x) f(x)关于坐标原点对称
    • 可以 f ( x ) f(x) f(x)关于原点对称的图形理解为两部分: f ( x ) f(x) f(x)关于 y y y轴对称的图形和 f ( x ) f(x) f(x)关于 x x x轴对称的图形如果重合,那么 f ( x ) f(x) f(x)就是关于原点对称的奇函数

小结

  • The graph of f ( − x ) f(−x) f(x) is the mirror image of the graph of f ( x ) f(x) f(x) with respect to the vertical axis.
  • The graph of − f ( x ) −f(x) f(x) is the mirror image of the graph of f ( x ) f(x) f(x) with respect to the horizontal axis.
  • A function is called even if f ( − x ) = f ( x ) f(−x)=f(x) f(x)=f(x) for all x x x (For example, cos ⁡ ( x ) \cos(x) cos(x)).
  • A function is called odd if f ( − x ) = − f ( x ) f(−x)=−f(x) f(x)=f(x) for all x x x (For example, sin ⁡ ( x ) \sin(x) sin(x)).

其他翻折变换

关于 y = ± x y=\pm x y=±x对称的直角坐标

  • A ( x , y ) A(x,y) A(x,y)关于 y = x y=x y=x的对称点坐标 B ( y , x ) B(y,x) B(y,x)
  • A ( x , y ) A(x,y) A(x,y)关于 y − x y-x yx的对称点坐标 B ( − y , − x ) B(-y,-x) B(y,x)

关于 x = u 对称 关于x=u对称 关于x=u对称的函数

  • f ( x ) f(x) f(x)关于 x = u x=u x=u对称:

    • f ( x ) f(x) f(x)的定义域关于 x = u x=u x=u对称
  • x 1 , x 2 x_1,x_2 x1,x2关于 u u u对称,则 x 1 + x 2 = 2 u x_1+x_2=2u x1+x2=2u,反之亦然

    • A ( a , f ( a ) ) A(a,f(a)) A(a,f(a)) f ( x ) f(x) f(x)上的点,则 A A A关于对称轴 x = u x=u x=u的对称点 B ( 2 u − a , f ( a ) ) B(2u-a,f(a)) B(2ua,f(a))也必然在 f ( x ) f(x) f(x)
    • 从而 f ( 2 u − a ) f(2u-a) f(2ua)= f ( a ) f(a) f(a)
    • 由于 a a a是定义域内的任意点,所以 f ( 2 u − x ) = f ( x ) f(2u-x)=f(x) f(2ux)=f(x)
    • 即,满足:
      • 定义域关于 x = u x=u x=u对称
      • f ( 2 u − x ) f(2u-x) f(2ux)= f ( x ) f(x) f(x)
    • 的函数是关于 x = u x=u x=u对称的函数
  • 例如 y ( x ) = ( x − 1 ) 2 y(x)=(x-1)^2 y(x)=(x1)2; y ( 2 − x ) = ( ( 2 − x ) − 1 ) 2 = ( 1 − x ) 2 = ( x − 1 ) 2 y(2-x)=((2-x)-1)^2=(1-x)^2=(x-1)^2 y(2x)=((2x)1)2=(1x)2=(x1)2,即 y ( x ) = y ( 2 − x ) y(x)=y(2-x) y(x)=y(2x),对称轴为 u = 1 2 ⋅ 2 = 1 u=\frac{1}{2}\cdot2=1 u=212=1

    • 特别的,偶函数关于 x = 0 x=0 x=0对称, f ( x ) = f ( − x ) f(x)=f(-x) f(x)=f(x),对称轴 x = u = 0 x=u=0 x=u=0,因为 x + ( − x ) = 2 u = 0 ; u = 0 x+(-x)=2u=0;u=0 x+(x)=2u=0;u=0

关于 y = v y=v y=v对称的两个函数

  • f 1 ( x ) , f 2 ( x ) f_1(x),f_2(x) f1(x),f2(x)在定义域内满足 f 1 ( x ) + f 2 ( x ) = 2 v f_1(x)+f_2(x)=2v f1(x)+f2(x)=2v,则 f 1 ( x ) , f 2 ( x ) f_1(x),f_2(x) f1(x),f2(x)关于 y = v y=v y=v对称

相关文章:

EM@坐标@函数@图象的对称和翻折变换

文章目录 abstract翻折变换关于坐标轴翻折 f ( − x ) , f ( x ) f(-x),f(x) f(−x),f(x) − f ( x ) , f ( x ) -f(x),f(x) −f(x),f(x) 偶函数奇函数小结 其他翻折变换关于 y x y\pm x yx对称的直角坐标 关于 x u 对称 关于xu对称 关于xu对称的函数关于 y v yv yv对称的两…...

Python之json模块

JSON (JavaScript Object Notation),由 RFC 7159 (它取代了 RFC 4627) 和 ECMA-404 指定,是一个受 JavaScript 的对象字面值句法启发的轻量级数据交换格式。JSON独立于编程语言的文本格式来存储和表示数据,现在大部分的数据传输基本使用的都是…...

机器学习---BP算法

1. 多级网络 层号确定层的高低:层号较小者,层次较低,层号较大者,层次较高。 输入层:被记作第0层。该层负责接收来自网络外部的信息。 第j层:第j-1层的直接后继层(j>0)&#xff…...

继苹果、联发科后,传高通下一代5G芯片将由台积电以3纳米代工

台积电3纳米又有重量级客户加入。市场传出,继苹果、联发科之后,手机芯片大厂高通下一代5G旗舰芯片也将交由台积电以3纳米生产,最快将于10月下旬发表,成为台积电3纳米第三家客户。 针对相关传闻,至昨日(25日…...

【自定义类型】--- 位段、枚举、联合

💓博客主页:江池俊的博客⏩收录专栏:C语言进阶之路👉专栏推荐:✅C语言初阶之路 ✅数据结构探索💻代码仓库:江池俊的代码仓库🎉欢迎大家点赞👍评论📝收藏⭐ 文…...

区块链(9):java区块链项目的Web服务实现之实现web服务

1 引入pom依赖 <dependency><groupId>org.eclipse.jetty</groupId><artifactId>jetty-server</artifactId><version>9.4.8.v20171121</version></dependency><dependency><groupId>org.eclipse.jetty</groupId…...

【CV】各种库安装报错及解决办法

目录 1.Error&#xff1a;Cannot unpack file… 1.Error&#xff1a;Cannot unpack file… 使用命令pip install -i https://pypi.tuna.tsinghua.edu.cn/simple --trusted-host pypi.tuna.tsinghua.edu.cn 包名安装 参考&#xff1a;解决Python使用pip安装库文件出现“Error&a…...

【算法系列篇】哈希表

文章目录 前言1. 两数之和1.1 题目要求1.2 做题思路1.3 Java代码实现 2. 判断是否为字符重排2.1 题目要求2.2 做题思路2.3 Java代码实现 3. 存在重复元素3.1 题目要求3.2 做题思路3.3 Java代码实现 4. 存在重复元素II4.2 题目要求4.2 做题思路4.3 Java代码实现 5. 字母异位词分…...

计算机视觉——飞桨深度学习实战-起始篇

后面我会直接跳到实战项目&#xff0c;将计算机视觉的主要任务和目标都实现一遍&#xff0c;但是需要大家下去自己多理解和学习一下。例如&#xff0c;什么是深度学习&#xff0c;什么是计算机视觉&#xff0c;什么是自然语言处理&#xff0c;计算机视觉的主要任务有哪些&#…...

vscode中运行脚手架项目报表

必选在cmd页面里面安装脚手架离谱啊,不然无法执行npm命令啊 vscode运行vue项目_小何不秃头06的博客-CSDN博客 finereport激活成功 - 帆软 (fanruan.com)...

中睿天下荣获2023全国智能驾驶测试赛车联网安全比赛第一名

9月24日&#xff0c;由工业和信息化部、公安部、交通运输部、中国科学技术协会、北京市人民政府共同主办的2023世界智能网联汽车大会展览会在北京闭幕。同期举行的全国智能驾驶测试赛&#xff08;京津冀赛区&#xff09;宣布比赛结果&#xff0c;中睿天下凭借过硬的产品实力&am…...

opencv图像数组坐标系

在OpenCV的Python接口&#xff08;cv2&#xff09;中&#xff0c;加载的图像数组遵循以下坐标系和方向约定&#xff1a; 1. **坐标系&#xff1a;** OpenCV的坐标系遵循数学中的坐标系&#xff0c;原点&#xff08;0, 0&#xff09;位于图像的左上角。横轴&#xff08;X轴&…...

zookeeper mac安装

目录 1.下载zookeeper安装包 2.解压安装包 3.修改配置文件 4.启动服务端 5.启动客户端 这边工作中用到了zookeeper组件&#xff0c;但自己独立安装弄的不太多&#xff0c;这边本机mac装一个做测试使用 以下是安装记录&#xff0c;可以作为参考 从以下链接zookeeper版本列…...

js生成随机16进制数

在JavaScript中&#xff0c;可以使用以下的代码来生成一个100位的随机十六进制数&#xff1a; function generateRandomHex(length) {var result ;var characters 0123456789abcdef;for (var i 0; i < length; i) {result characters.charAt(Math.floor(Math.random() …...

第七章 查找 八、B树

目录 一、定义 二、B树的核心特性 1、B树各个结点的子树数和关键字数 2、子树高度 3、关键字的值 4、B树高度 三、B树的插入 四、B树的删除 一、定义 B树&#xff0c;又称多路平衡查找树&#xff0c;B树中所有结点的孩子个数的最大值称为B树的阶&#xff0c;通常用m表示…...

Vue以及整合ElementUI

初始化vue项目 #vue 脚手架使用 webpack 模板初始化一个 appname 项目 vue init webpack appname启动 vue 项目 #项目的 package.json 中有 scripts&#xff0c;代表我们能运行的命令 npm start npm run dev #启动项目 npm run build&#xff1a;将项目打包项目结构 运行流程…...

免费、丰富、便捷的资源论坛——Yiove论坛,包括但不限于阿里云盘、夸克云盘、迅雷云盘等等

引言 目前资源的数量达到了60000&#xff0c;六万多的资源意味着在这里几乎可以找到任何你想要的资源。 当然&#xff0c;资源并不是论坛的全部&#xff0c;其中还包括了技术交流、福利分享、最新资讯等等。 传送门&#xff1a;YiOVE论坛 - 一个有资源有交流&#xff0c;有一…...

1.3 互联网的组成

思维导图&#xff1a; 前言&#xff1a; 我的笔记&#xff1a; #### 一、总览 - **互联网的结构**&#xff1a; - 具有全球覆盖和复杂的拓扑结构。 - 即便结构复杂&#xff0c;还是可以从工作方式上简化为两大部分&#xff1a;边缘部分和核心部分。 #### 二、边缘部分 -…...

【机器学习】熵和概率分布,图像生成中的量化评估IS与FID

详解机器学习中的熵、条件熵、相对熵、交叉熵 图像生成中常用的量化评估指标通常有Inception Score (IS)和Frchet Inception Distance (FID) Inception Score (IS) 与 Frchet Inception Distance (FID) GAN的量化评估方法——IS和FID&#xff0c;及其pytorch代码...

Vue3.0跨端Web SDK访问微信小程序云储存,文件上传路径不存在/文件受损无法显示问题(已解决)

整理需求&#xff1a; 需要vue3.0作为pc端的后台管理来连接微信小程序客户端需要Web SDK的引入&#xff0c;实现vue3.0接入云开发环境需要以云环境作为线上服务器&#xff0c;将vue3.0上传的本地文件通过云环境进入云储存&#xff0c;并将文件在云端生成云端快捷访问路径及htt…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

C++ 基础特性深度解析

目录 引言 一、命名空间&#xff08;namespace&#xff09; C 中的命名空间​ 与 C 语言的对比​ 二、缺省参数​ C 中的缺省参数​ 与 C 语言的对比​ 三、引用&#xff08;reference&#xff09;​ C 中的引用​ 与 C 语言的对比​ 四、inline&#xff08;内联函数…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明

AI 领域的快速发展正在催生一个新时代&#xff0c;智能代理&#xff08;agents&#xff09;不再是孤立的个体&#xff0c;而是能够像一个数字团队一样协作。然而&#xff0c;当前 AI 生态系统的碎片化阻碍了这一愿景的实现&#xff0c;导致了“AI 巴别塔问题”——不同代理之间…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的----NTFS源代码分析--重要

根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的 第一部分&#xff1a; 0: kd> g Breakpoint 9 hit Ntfs!ReadIndexBuffer: f7173886 55 push ebp 0: kd> kc # 00 Ntfs!ReadIndexBuffer 01 Ntfs!FindFirstIndexEntry 02 Ntfs!NtfsUpda…...

uni-app学习笔记三十五--扩展组件的安装和使用

由于内置组件不能满足日常开发需要&#xff0c;uniapp官方也提供了众多的扩展组件供我们使用。由于不是内置组件&#xff0c;需要安装才能使用。 一、安装扩展插件 安装方法&#xff1a; 1.访问uniapp官方文档组件部分&#xff1a;组件使用的入门教程 | uni-app官网 点击左侧…...

大模型真的像人一样“思考”和“理解”吗?​

Yann LeCun 新研究的核心探讨&#xff1a;大语言模型&#xff08;LLM&#xff09;的“理解”和“思考”方式与人类认知的根本差异。 核心问题&#xff1a;大模型真的像人一样“思考”和“理解”吗&#xff1f; 人类的思考方式&#xff1a; 你的大脑是个超级整理师。面对海量信…...

Element-Plus:popconfirm与tooltip一起使用不生效?

你们好&#xff0c;我是金金金。 场景 我正在使用Element-plus组件库当中的el-popconfirm和el-tooltip&#xff0c;产品要求是两个需要结合一起使用&#xff0c;也就是鼠标悬浮上去有提示文字&#xff0c;并且点击之后需要出现气泡确认框 代码 <el-popconfirm title"是…...