机器学习---BP算法
1. 多级网络
层号确定层的高低:层号较小者,层次较低,层号较大者,层次较高。
输入层:被记作第0层。该层负责接收来自网络外部的信息。
第j层:第j-1层的直接后继层(j>0),它直接接受第j-1层的输出。
输出层:它是网络的最后一层,具有该网络的最大层号,负责输出网络的计算结果。
隐藏层:除输入层和输出层以外的其它各层叫隐藏层。隐藏层不直接接受外界的信号,也不直接向
外界发送信号。
输出层的层号为该网络的层数:n层网络,或n级网络。
第j-1层到第j层的联接矩阵为第j层联接矩阵,输出层对应的矩阵叫输出层联接矩阵。
2. BP算法
BP网络主要用于:
1)函数逼近:用输入向量和相应的输出向量训练一个网络逼近一个函数。
2)模式识别:用一个特定的输出向量将它与输入向量联系起来。
3)分类:把输入向量 以所定义的合适方式进行分类。
4)数据压缩:减少输出向量维数以便于传输或存储。
基本原理:利用输出误差来估计输出层的直接前导层的误差,在用这个误差估计更前一层的误
差,如此一层一层的反传下去,就获得了所有其他各层的误差估计,利用此误差更新权重。
W是网络的参数,J是目标函数。
基本学习过程:神经网络在外界有导师输入样本的刺激下,不断改变网络的连接权值,以使网络的
输出不断接近期望的输出。
学习的本质:对各连接权值的动态调整。
学习规则:将误差分摊给各层的所有单元——各层单元的误差信号,修正各层连接权值。
信号前馈:输入样本-->输入层-->各隐层-->输出层。
判断是否转入反向传播阶段:若输出层的实际输出与期望输出(教师信号)不符。
误差反传:误差以在各层表达,并借此来修正各层单元的权值,网络输出的误差减少到可接受的程
度或进行到预先设定的学习次数为止。
一个隐含层(也可以看成3层BP网络):
①期望输出:
②误差函数e(第K个样本):
③激活函数f(.)
激活函数必须处处可导,比如:sigmoid函数
BP算法步骤:
①网络初始化:给各连接权值赋一个区间(-1,1)内的随机数,设定误差函数e,给定计算精确度
ε和最大学习次数M。
②随机选取第K个输入样本,及对应期望输出
③计算各层各神经元的输入和输出
④计算误差函数对输出层权重的偏导数---链式微分法则
⑤计算误差函数对隐藏层权值的偏导数δ(k)
⑥修正隐藏层---输出层连接权值w(k)
⑦修正输入层---隐藏层连接权值
⑧计算全局误差
⑨判断网络误差是否满足要求
当误差达到预设精度或者学习次数大于设定的最大次数,则结束算法;
否则,选取下一个学习样本及对应的期望输出,返回到第三步,进入下一轮学习。
BP算法的直观解释:
①当误差对权值的偏导数大于0时,权值调整量为负,实际输出大于期望输出,权值向减少方向调
整,使得实际输出与期望输出的差减少。
②当误差对权值的偏导数小于0时,权值调整量为正,实际输出小于期望输出,权值向增大方向调
整,使得实际输出与期望输出的差减少。
训练过程概述:
样本:(输入向量,理想输出向量)
①向前传播阶段
从样本集中取一个样本(Xp,Yp),将Xp输入到网络;
计算相应的实际输出Op:
②向后传播阶段,误差传播阶段
计算实际输出Op与相应的理想输出Yp的差; 按极小化误差的方法调整权值矩阵。
网络中关于第p个样本的误差:
网络中关于整个样本集的误差:
误差传播分析:
①输出层权的调整
②隐藏层权的调整
δpk-1的权值和δ1k、δ2k......δmk有关,不妨认为δpk-1通过权Wp1对δ1k做出贡献, 通过权Wp2对
δ2k做出贡献.......通过权Wpm对δmk做出贡献。
当ANj为输出层神经元时:
当ANj为隐藏层神经元时:
NETk是Oj下一级的神经元的网络输入。
相关文章:

机器学习---BP算法
1. 多级网络 层号确定层的高低:层号较小者,层次较低,层号较大者,层次较高。 输入层:被记作第0层。该层负责接收来自网络外部的信息。 第j层:第j-1层的直接后继层(j>0)ÿ…...

继苹果、联发科后,传高通下一代5G芯片将由台积电以3纳米代工
台积电3纳米又有重量级客户加入。市场传出,继苹果、联发科之后,手机芯片大厂高通下一代5G旗舰芯片也将交由台积电以3纳米生产,最快将于10月下旬发表,成为台积电3纳米第三家客户。 针对相关传闻,至昨日(25日…...

【自定义类型】--- 位段、枚举、联合
💓博客主页:江池俊的博客⏩收录专栏:C语言进阶之路👉专栏推荐:✅C语言初阶之路 ✅数据结构探索💻代码仓库:江池俊的代码仓库🎉欢迎大家点赞👍评论📝收藏⭐ 文…...

区块链(9):java区块链项目的Web服务实现之实现web服务
1 引入pom依赖 <dependency><groupId>org.eclipse.jetty</groupId><artifactId>jetty-server</artifactId><version>9.4.8.v20171121</version></dependency><dependency><groupId>org.eclipse.jetty</groupId…...
【CV】各种库安装报错及解决办法
目录 1.Error:Cannot unpack file… 1.Error:Cannot unpack file… 使用命令pip install -i https://pypi.tuna.tsinghua.edu.cn/simple --trusted-host pypi.tuna.tsinghua.edu.cn 包名安装 参考:解决Python使用pip安装库文件出现“Error&a…...

【算法系列篇】哈希表
文章目录 前言1. 两数之和1.1 题目要求1.2 做题思路1.3 Java代码实现 2. 判断是否为字符重排2.1 题目要求2.2 做题思路2.3 Java代码实现 3. 存在重复元素3.1 题目要求3.2 做题思路3.3 Java代码实现 4. 存在重复元素II4.2 题目要求4.2 做题思路4.3 Java代码实现 5. 字母异位词分…...

计算机视觉——飞桨深度学习实战-起始篇
后面我会直接跳到实战项目,将计算机视觉的主要任务和目标都实现一遍,但是需要大家下去自己多理解和学习一下。例如,什么是深度学习,什么是计算机视觉,什么是自然语言处理,计算机视觉的主要任务有哪些&#…...
vscode中运行脚手架项目报表
必选在cmd页面里面安装脚手架离谱啊,不然无法执行npm命令啊 vscode运行vue项目_小何不秃头06的博客-CSDN博客 finereport激活成功 - 帆软 (fanruan.com)...

中睿天下荣获2023全国智能驾驶测试赛车联网安全比赛第一名
9月24日,由工业和信息化部、公安部、交通运输部、中国科学技术协会、北京市人民政府共同主办的2023世界智能网联汽车大会展览会在北京闭幕。同期举行的全国智能驾驶测试赛(京津冀赛区)宣布比赛结果,中睿天下凭借过硬的产品实力&am…...

opencv图像数组坐标系
在OpenCV的Python接口(cv2)中,加载的图像数组遵循以下坐标系和方向约定: 1. **坐标系:** OpenCV的坐标系遵循数学中的坐标系,原点(0, 0)位于图像的左上角。横轴(X轴&…...

zookeeper mac安装
目录 1.下载zookeeper安装包 2.解压安装包 3.修改配置文件 4.启动服务端 5.启动客户端 这边工作中用到了zookeeper组件,但自己独立安装弄的不太多,这边本机mac装一个做测试使用 以下是安装记录,可以作为参考 从以下链接zookeeper版本列…...
js生成随机16进制数
在JavaScript中,可以使用以下的代码来生成一个100位的随机十六进制数: function generateRandomHex(length) {var result ;var characters 0123456789abcdef;for (var i 0; i < length; i) {result characters.charAt(Math.floor(Math.random() …...

第七章 查找 八、B树
目录 一、定义 二、B树的核心特性 1、B树各个结点的子树数和关键字数 2、子树高度 3、关键字的值 4、B树高度 三、B树的插入 四、B树的删除 一、定义 B树,又称多路平衡查找树,B树中所有结点的孩子个数的最大值称为B树的阶,通常用m表示…...

Vue以及整合ElementUI
初始化vue项目 #vue 脚手架使用 webpack 模板初始化一个 appname 项目 vue init webpack appname启动 vue 项目 #项目的 package.json 中有 scripts,代表我们能运行的命令 npm start npm run dev #启动项目 npm run build:将项目打包项目结构 运行流程…...

免费、丰富、便捷的资源论坛——Yiove论坛,包括但不限于阿里云盘、夸克云盘、迅雷云盘等等
引言 目前资源的数量达到了60000,六万多的资源意味着在这里几乎可以找到任何你想要的资源。 当然,资源并不是论坛的全部,其中还包括了技术交流、福利分享、最新资讯等等。 传送门:YiOVE论坛 - 一个有资源有交流,有一…...

1.3 互联网的组成
思维导图: 前言: 我的笔记: #### 一、总览 - **互联网的结构**: - 具有全球覆盖和复杂的拓扑结构。 - 即便结构复杂,还是可以从工作方式上简化为两大部分:边缘部分和核心部分。 #### 二、边缘部分 -…...

【机器学习】熵和概率分布,图像生成中的量化评估IS与FID
详解机器学习中的熵、条件熵、相对熵、交叉熵 图像生成中常用的量化评估指标通常有Inception Score (IS)和Frchet Inception Distance (FID) Inception Score (IS) 与 Frchet Inception Distance (FID) GAN的量化评估方法——IS和FID,及其pytorch代码...

Vue3.0跨端Web SDK访问微信小程序云储存,文件上传路径不存在/文件受损无法显示问题(已解决)
整理需求: 需要vue3.0作为pc端的后台管理来连接微信小程序客户端需要Web SDK的引入,实现vue3.0接入云开发环境需要以云环境作为线上服务器,将vue3.0上传的本地文件通过云环境进入云储存,并将文件在云端生成云端快捷访问路径及htt…...

使用chat GPT 生成一个js 生成天数的方法
function calculateDaysDifference(targetDateString) {const currentDate new Date();const targetDate new Date(targetDateString);// 计算毫秒差异const timeDifference targetDate - currentDate;// 计算天数差异,如果结果为负数,则设置为0const…...

BUUCTF reverse wp 76 - 80
[CISCN2018]2ex 四处游走寻找关键代码 int __fastcall sub_400430(int a1, unsigned int a2, int a3) {unsigned int v3; // $v0int v4; // $v0int v5; // $v0int v6; // $v0unsigned int i; // [sp8h] [8h]unsigned int v9; // [sp8h] [8h]int v10; // [spCh] [Ch]v10 0;for…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互
物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...
逻辑回归:给不确定性划界的分类大师
想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...
FastAPI 教程:从入门到实践
FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...
条件运算符
C中的三目运算符(也称条件运算符,英文:ternary operator)是一种简洁的条件选择语句,语法如下: 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true,则整个表达式的结果为“表达式1”…...

如何在看板中有效管理突发紧急任务
在看板中有效管理突发紧急任务需要:设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP(Work-in-Progress)弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中,设立专门的紧急任务通道尤为重要,这能…...
在Ubuntu中设置开机自动运行(sudo)指令的指南
在Ubuntu系统中,有时需要在系统启动时自动执行某些命令,特别是需要 sudo权限的指令。为了实现这一功能,可以使用多种方法,包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法,并提供…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)
UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化…...
Rapidio门铃消息FIFO溢出机制
关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系,以下是深入解析: 门铃FIFO溢出的本质 在RapidIO系统中,门铃消息FIFO是硬件控制器内部的缓冲区,用于临时存储接收到的门铃消息(Doorbell Message)。…...

华硕a豆14 Air香氛版,美学与科技的馨香融合
在快节奏的现代生活中,我们渴望一个能激发创想、愉悦感官的工作与生活伙伴,它不仅是冰冷的科技工具,更能触动我们内心深处的细腻情感。正是在这样的期许下,华硕a豆14 Air香氛版翩然而至,它以一种前所未有的方式&#x…...
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问(基础概念问题) 1. 请解释Spring框架的核心容器是什么?它在Spring中起到什么作用? Spring框架的核心容器是IoC容器&#…...