力扣第239题 c++滑动窗口经典题 单调队列
题目
239. 滑动窗口最大值
困难
提示
队列 数组 滑动窗口 单调队列 堆(优先队列)
给你一个整数数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。
返回 滑动窗口中的最大值 。
示例 1:
输入:nums = [1,3,-1,-3,5,3,6,7], k = 3 输出:[3,3,5,5,6,7] 解释: 滑动窗口的位置 最大值 --------------- ----- [1 3 -1] -3 5 3 6 7 31 [3 -1 -3] 5 3 6 7 31 3 [-1 -3 5] 3 6 7 51 3 -1 [-3 5 3] 6 7 51 3 -1 -3 [5 3 6] 7 61 3 -1 -3 5 [3 6 7] 7
示例 2:
输入:nums = [1], k = 1 输出:[1]
提示:
1 <= nums.length <= 105-104 <= nums[i] <= 1041 <= k <= nums.length
思路和解题方法
- 定义了一个名为
Solution的类,其中包含了一个嵌套类myqueue。myqueue类使用deque来实现一个单调队列,具有三个方法:pop、push和front。maxSlidingWindow方法接收一个整数数组nums和窗口大小k作为参数,用于求解滑动窗口的最大值。- 在方法中,首先创建一个
myqueue对象que,并将前k个元素依次插入队列中(通过调用myqueue类的push方法)。- 然后将队列的首元素(即最大值)加入到结果向量
ans中。- 接下来,从第
k个元素开始遍历数组nums,每次循环:
- 先将窗口外的元素从队列中移出(通过调用
myqueue类的pop方法)。- 然后将当前元素插入到队列中(通过调用
myqueue类的push方法)。- 再将队列的首元素加入到结果向量
ans中。- 最后,返回结果向量
ans作为最终的结果。
复杂度
时间复杂度:
O(n)
时间复杂度为O(n),其中n表示数组
nums的大小。因为每个元素最多进出队列一次,所以总共有2n次操作,因此时间复杂度为O(n)。
空间复杂度
O(k)
空间复杂度是O(k),其中k为窗口大小。因为单调队列中最多存储k个元素,所以空间复杂度为O(k)。值得注意的是,如果窗口大小为1,即每个元素都被作为一个窗口进行处理,那么空间复杂度将是O(n)。
c++ 代码
class Solution {
public:class myqueue{public:deque<int>que; // 使用deque作为存储队列元素的容器void pop(int value) // 弹出value,如果当前队列的首元素等于value{if(!que.empty() && value == que.front()) // 如果队列不为空且队列首元素等于valueque.pop_front(); // 弹出队列首元素}void push(int value) // 将value插入队列中{while(!que.empty() && value > que.back()) // 如果队列不为空且value大于队列末尾元素que.pop_back(); // 弹出队列末尾元素,以保持队列单调递减que.push_back(value); // 插入value到队列末尾}int front(){ // 返回队列的首元素return que.front();}};
public:vector<int> maxSlidingWindow(vector<int>& nums, int k) {myqueue que; // 创建一个myqueue对象vector<int> ans; // 存储结果的向量for(int i = 0; i < k; i++) // 初始化窗口的大小,将前k个元素插入队列中{que.push(nums[i]);}ans.push_back(que.front()); // 将队列的首元素(当前窗口的最大值)加入结果向量中for(int i = k; i < nums.size(); i++) // 从第k个元素开始遍历数组{que.pop(nums[i - k]); // 弹出窗口外的元素que.push(nums[i]); // 将当前元素插入队列中ans.push_back(que.front()); // 将队列的首元素加入结果向量中}return ans; // 返回结果向量}
};
觉得有用的话可以点点赞,支持一下。
如果愿意的话关注一下。会对你有更多的帮助。
每天都会不定时更新哦 >人< 。
相关文章:
力扣第239题 c++滑动窗口经典题 单调队列
题目 239. 滑动窗口最大值 困难 提示 队列 数组 滑动窗口 单调队列 堆(优先队列) 给你一个整数数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。 返回 滑动窗口中的…...
华为云云耀云服务器L实例评测|华为云云耀云服务器docker部署srs,可使用HLS协议
华为云云耀云服务器L实例评测|华为云云耀云服务器docker部署srs,可使用HLS协议 什么是华为云云耀云L实例 云耀云服务器L实例,面向初创企业和开发者打造的全新轻量应用云服务器。提供丰富严选的应用镜像,实现应用一键部署&#x…...
jira流转issue条目状态transitions的rest实用脚本,issue状态改变调整
官方文档链接地址: POST Transition issue Performs an issue transition and, if the transition has a screen, updates the fields from the transition screen. sortByCategory To update the fields on the transition screen, specify the fields in the fiel…...
JAVA 注解
1 概念 Annotation(注解)是 Java 提供的一种对元程序中元素关联信息和元数据(metadata)的途径和方法。Annatation(注解)是一个接口,程序可以通过反射来获取指定程序中元素的 Annotation 对象,然后通过该 An…...
C++面试题准备
文章目录 一、线程1.什么是进程,线程,彼此有什么区别?2.多进程、多线程的优缺点3.什么时候用进程,什么时候用线程4.多进程、多线程同步(通讯)的方法5.父进程、子进程的关系以及区别6.什么是进程上下文、中断上下文7.一…...
使用Java操作Redis
要在Java程序中操作Redis可以使用Jedis开源工具。 一、jedis的下载 如果使用Maven项目,可以把以下内容添加到pom中 <!-- https://mvnrepository.com/artifact/redis.clients/jedis --> <dependency> <groupId>redis.clients</groupId>…...
VRRP配置案例(路由走向分析,端口切换)
以下配置图为例 PC1的配置 acsw下行为access口,上行为trunk口, 将g0/0/3划分到vlan100中 <Huawei>sys Enter system view, return user view with CtrlZ. [Huawei]sysname acsw [acsw] Sep 11 2023 18:15:48-08:00 acsw DS/4/DATASYNC_CFGCHANGE:O…...
【图像处理】【应用程序设计】加载,编辑和保存图像数据、图像分割、色度键控研究(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
05. 机器学习入门 - 动态规划
文章目录 从一个案例开始动态规划 Hi, 你好。我是茶桁。 咱们之前的课程就给大家讲了什么是人工智能,也说了每个人的定义都不太一样。关于人工智能的不同观点和方法,其实是一个很复杂的领域,我们无法用一个或者两个概念确定什么是人工智能&a…...
【JVM】第五篇 垃圾收集器G1和ZGC详解
导航 一. G1垃圾收集算法详解1. 大对象Humongous说明2. G1收集器执行一次GC运行的过程步骤3. G1垃圾收集分类4. G1垃圾收集器参数设置5. G1垃圾收集器的优化建议6. 适合使用G1垃圾收集器的场景?二. ZGC垃圾收集器详解1. NUMA与UMA2. 颜色指针3. ZGC的运作过程4. ZGC垃圾收集器…...
嵌入式Linux应用开发-基础知识-第十九章驱动程序基石⑤
嵌入式Linux应用开发-基础知识-第十九章驱动程序基石⑤ 第十九章 驱动程序基石⑤19.9 mmap19.9.1 内存映射现象与数据结构19.9.2 ARM架构内存映射简介19.9.2.1 一级页表映射过程19.9.2.2 二级页表映射过程 19.9.3 怎么给APP新建一块内存映射19.9.3.1 mmap调用过程19.9.3.2 cach…...
数据分析技能点-独立性检验拟合优度检验
在这个数据驱动的时代,数据分析已经成为了一个不可或缺的工具,无论是在商业决策、医疗研究还是日常生活中。然而数据分析并不仅仅是一堆数字和图表;它是一个需要严谨的科学方法和逻辑推理的过程。 本文将重点介绍两种广泛应用于数据分析的统计检验方法:独立性检验和拟合优…...
了解汽车ecu组成
常用ecu框架组成: BCM(body control module)-车身控制模块: 如英飞凌tc265芯片: 车身控制单元(BCM)适合应用于12V和24V两种电压工作环境,可用于轿车、大客车和商用车的车身控制。输入模块通过采集电路采集各路开关量和…...
用AI原生向量数据库Milvus Cloud 搭建一个 AI 聊天机器人
搭建聊天机器人 一切准备就绪后,就可以搭建聊天机器人了。 文档存储 机器人需要存储文档块以及使用 Towhee 提取出的文档块向量。在这个步骤中,我们需要用到 Milvus。 安装轻量版 Milvus Lite,使用以下命令运行 Milvus 服务器: (chatbot_venv) [egoebelbecker@ares milvus_…...
【OpenCV-Torch-dlib-ubuntu】Vm虚拟机linux环境摄像头调用方法与dilb模型探究
前言 随着金秋时节的来临,国庆和中秋的双重喜庆汇聚成一片温暖的节日氛围。在这个美好的时刻,我们有幸共同迎来一次长达8天的假期,为心灵充电,为身体放松,为未来充实自己。今年的国庆不仅仅是家国团聚的时刻ÿ…...
(二)详解观察者模式
一.使用场景 当我们需要一个类,在他的内部元素发生变化的时候可以主动通知其他类的时候,同时要保持良好的可拓展性,可以采用观察者模式。 二.核心 观察者模式出版者订阅者 我们拥有一个主题对象,和一些其他对象,包…...
嵌入式Linux应用开发-基础知识-第十九章驱动程序基石④
嵌入式Linux应用开发-基础知识-第十九章驱动程序基石④ 第十九章 驱动程序基石④19.7 工作队列19.7.1 内核函数19.7.1.1 定义 work19.7.1.2 使用 work:schedule_work19.7.1.3 其他函数 19.7.2 编程、上机19.7.3 内部机制19.7.3.1 Linux 2.x的工作队列创建过程19.7.3…...
2023 彩虹全新 SUP 模板,卡卡云模板修复版
2023 彩虹全新 SUP 模板,卡卡云模板,首页美化,登陆页美化,修复了 PC 端购物车页面显示不正常的问题。 使用教程 将这俩个数据库文件导入数据库; 其他的直接导入网站根目录覆盖就好; 若首页显示不正常&a…...
【AI视野·今日NLP 自然语言处理论文速览 第四十一期】Tue, 26 Sep 2023
AI视野今日CS.NLP 自然语言处理论文速览 Tue, 26 Sep 2023 Totally 75 papers 👉上期速览✈更多精彩请移步主页 Daily Computation and Language Papers Physics of Language Models: Part 3.1, Knowledge Storage and Extraction Authors Zeyuan Allen Zhu, Yuanz…...
【iptables 实战】05 iptables设置网络转发实验
一、网络架构 实验效果,通过机器B的转发功能,将机器A的报文转发到机器C 本实验准备三台机器分别配置如下网络 机器A ip:192.168.56.104 机器C ip:10.1.0.10 机器B 两张网卡,分别的ip是192.168.56.106和10.1.0.11 如图所示 如下图所示 二、…...
手游刚开服就被攻击怎么办?如何防御DDoS?
开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...
反向工程与模型迁移:打造未来商品详情API的可持续创新体系
在电商行业蓬勃发展的当下,商品详情API作为连接电商平台与开发者、商家及用户的关键纽带,其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息(如名称、价格、库存等)的获取与展示,已难以满足市场对个性化、智能…...
Cesium1.95中高性能加载1500个点
一、基本方式: 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
【2025年】解决Burpsuite抓不到https包的问题
环境:windows11 burpsuite:2025.5 在抓取https网站时,burpsuite抓取不到https数据包,只显示: 解决该问题只需如下三个步骤: 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...
【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】
1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件(System Property Definition File),用于声明和管理 Bluetooth 模块相…...
Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决
Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中,新增了一个本地验证码接口 /code,使用函数式路由(RouterFunction)和 Hutool 的 Circle…...
短视频矩阵系统文案创作功能开发实践,定制化开发
在短视频行业迅猛发展的当下,企业和个人创作者为了扩大影响力、提升传播效果,纷纷采用短视频矩阵运营策略,同时管理多个平台、多个账号的内容发布。然而,频繁的文案创作需求让运营者疲于应对,如何高效产出高质量文案成…...
Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战
说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下,风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...
虚拟电厂发展三大趋势:市场化、技术主导、车网互联
市场化:从政策驱动到多元盈利 政策全面赋能 2025年4月,国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》,首次明确虚拟电厂为“独立市场主体”,提出硬性目标:2027年全国调节能力≥2000万千瓦࿰…...
