当前位置: 首页 > news >正文

【图像处理】【应用程序设计】加载,编辑和保存图像数据、图像分割、色度键控研究(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

嘿同学们,欢迎来尝试我的第一个应用程序设计器应用程序!这个应用程序能够加载、编辑和保存图像数据,让你轻松进行各种图像处理操作。每个操作步骤都可以通过“接受”按钮进行更新,而且你还可以使用“后退”按钮来回退到之前的步骤。

这个应用程序的功能非常丰富,让我们来看看有哪些内容包含在里面吧!

首先,你可以使用变换功能对图像进行旋转、翻转和分辨率的更改。无论是想调整图像的方向,还是改变其大小,这些功能都能满足你的需求。

接下来,转换功能可以帮助你将图像进行不同的格式转换。你可以将彩色图像转换为黑白图像,或者将图像转换为二进制和索引图像。这些转换过程非常简单,只需轻轻点击几下即可完成。

如果你想对图像进行滤波和去噪处理,这个应用程序的滤波器和噪声功能是非常实用的。你可以使用中值滤波器来处理脉冲噪声,或者使用高斯滤波器来消除具有高斯法向坐标的噪声。

除此之外,应用程序还提供了图像分割功能,可以帮助你将图像按照不同的特征进行切割和分离。这对于图像分析和处理来说非常重要,能够提供更多的操作和选择性。

最后,应用程序还包括色度键控功能,让你能够根据图像的色彩信息来进行选择性的处理和编辑。这有助于实现更精确的修改,让你能够更好地控制图像的色彩效果。

通过这个应用程序设计器应用程序,你可以轻松地处理、编辑和优化图像。不论是进行基本的变换和转换,还是使用滤波器、噪声处理、图像分割和色度键控等高级功能,你都能在这个应用程序中找到一切所需。赶快尝试一下吧,你会爱上这个功能强大的图像处理工具!

📚2 运行结果

 

当然可以换其他图片: 

部分代码:

  RUN=1; while (RUN==1)%vstupne udaje row a column faktoruprompt = {'row (0-5%):','column (0-5%):'};dlg_title = 'Enter values for a median filter:';num_lines = 1;def = {'2','2'};answer = inputdlg(prompt,dlg_title,num_lines,def);if (isempty(answer))return;endM1 = str2double(answer{1})/100;M2 = str2double(answer{2})/100;if (M1>=0 && M1<=5 && M2>=0 && M2<=5)RUN = 0;endend[~,~,D] = size(app.inputImage);if D==3 w = waitbar(0, 'Median filtering ...');%      M1 = (M1 * mm);%      M2 = (M2 * nn);M1 = str2double(answer{1})/100;M2 = str2double(answer{2})/100;hsize=[str2double(answer{1}) str2double(answer{2})];app.inputImage_median_filter(:,:,1) = medfilt2(app.inputImage(:,:,1));waitbar(1/3, w);app.inputImage_median_filter(:,:,2) = medfilt2(app.inputImage(:,:,2));waitbar(2/3, w);app.inputImage_median_filter(:,:,3) = medfilt2(app.inputImage(:,:,3));app.inputImage = app.inputImage_median_filter;app.imageList{end+1} = app.inputImage;imshow(app.inputImage_median_filter, 'Parent', app.modifiedImageAxes);close(w);elsew = waitbar(0, 'Median filtering ...');%      M1 = (M1 * mm);%      M2 = (M2 * nn);M1 = str2double(answer{1})/100;M2 = str2double(answer{2})/100;hsize=[str2double(answer{1}) str2double(answer{2})];   app.inputImage_median_filter = medfilt2(app.inputImage);app.inputImage = app.inputImage_median_filter;app.imageList{end+1} = app.inputImage;imshow(app.inputImage_median_filter, 'Parent', app.modifiedImageAxes);close(w);end

  RUN=1; 
    while (RUN==1)
            %vstupne udaje row a column faktoru
        prompt = {'row (0-5%):','column (0-5%):'};
        dlg_title = 'Enter values for a median filter:';
        num_lines = 1;
        def = {'2','2'};
        answer = inputdlg(prompt,dlg_title,num_lines,def);
        if (isempty(answer))
            return;
        end

        M1 = str2double(answer{1})/100;
        M2 = str2double(answer{2})/100;

        if (M1>=0 && M1<=5 && M2>=0 && M2<=5)
            RUN = 0;
        end
    end
    [~,~,D] = size(app.inputImage);
        if D==3 
    w = waitbar(0, 'Median filtering ...');
    %      M1 = (M1 * mm);
    %      M2 = (M2 * nn);
        M1 = str2double(answer{1})/100;
        M2 = str2double(answer{2})/100;
    hsize=[str2double(answer{1}) str2double(answer{2})];

    
    app.inputImage_median_filter(:,:,1) = medfilt2(app.inputImage(:,:,1));
    waitbar(1/3, w);
    app.inputImage_median_filter(:,:,2) = medfilt2(app.inputImage(:,:,2));
    waitbar(2/3, w);
    app.inputImage_median_filter(:,:,3) = medfilt2(app.inputImage(:,:,3));
    
    app.inputImage = app.inputImage_median_filter;
    app.imageList{end+1} = app.inputImage;
    
    imshow(app.inputImage_median_filter, 'Parent', app.modifiedImageAxes);
    close(w);
        else
            
      w = waitbar(0, 'Median filtering ...');
    %      M1 = (M1 * mm);
    %      M2 = (M2 * nn);
        M1 = str2double(answer{1})/100;
        M2 = str2double(answer{2})/100;
    hsize=[str2double(answer{1}) str2double(answer{2})];   
    app.inputImage_median_filter = medfilt2(app.inputImage);
    app.inputImage = app.inputImage_median_filter;
    app.imageList{end+1} = app.inputImage;
    
    imshow(app.inputImage_median_filter, 'Parent', app.modifiedImageAxes);
    close(w);
    
        end

    

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]黄文慧.图像处理并行编程方法的研究与应用[D].华南理工大学[2023-09-27].DOI:CNKI:CDMD:2.1013.150589.

[2]李同钧.支持遥感图像处理与分析的数据库系统应用与研究[D].中国科学技术大学,2005.DOI:10.7666/d.y731070.

[3]苏强.医学图像分割的若干算法研究及相应图像处理软件的设计开发[D].北京师范大学[2023-09-27].

🌈4 Matlab代码实现

相关文章:

【图像处理】【应用程序设计】加载,编辑和保存图像数据、图像分割、色度键控研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

05. 机器学习入门 - 动态规划

文章目录 从一个案例开始动态规划 Hi, 你好。我是茶桁。 咱们之前的课程就给大家讲了什么是人工智能&#xff0c;也说了每个人的定义都不太一样。关于人工智能的不同观点和方法&#xff0c;其实是一个很复杂的领域&#xff0c;我们无法用一个或者两个概念确定什么是人工智能&a…...

【JVM】第五篇 垃圾收集器G1和ZGC详解

导航 一. G1垃圾收集算法详解1. 大对象Humongous说明2. G1收集器执行一次GC运行的过程步骤3. G1垃圾收集分类4. G1垃圾收集器参数设置5. G1垃圾收集器的优化建议6. 适合使用G1垃圾收集器的场景?二. ZGC垃圾收集器详解1. NUMA与UMA2. 颜色指针3. ZGC的运作过程4. ZGC垃圾收集器…...

嵌入式Linux应用开发-基础知识-第十九章驱动程序基石⑤

嵌入式Linux应用开发-基础知识-第十九章驱动程序基石⑤ 第十九章 驱动程序基石⑤19.9 mmap19.9.1 内存映射现象与数据结构19.9.2 ARM架构内存映射简介19.9.2.1 一级页表映射过程19.9.2.2 二级页表映射过程 19.9.3 怎么给APP新建一块内存映射19.9.3.1 mmap调用过程19.9.3.2 cach…...

数据分析技能点-独立性检验拟合优度检验

在这个数据驱动的时代,数据分析已经成为了一个不可或缺的工具,无论是在商业决策、医疗研究还是日常生活中。然而数据分析并不仅仅是一堆数字和图表;它是一个需要严谨的科学方法和逻辑推理的过程。 本文将重点介绍两种广泛应用于数据分析的统计检验方法:独立性检验和拟合优…...

了解汽车ecu组成

常用ecu框架组成&#xff1a; BCM(body control module)-车身控制模块: 如英飞凌tc265芯片&#xff1a; 车身控制单元&#xff08;BCM&#xff09;适合应用于12V和24V两种电压工作环境&#xff0c;可用于轿车、大客车和商用车的车身控制。输入模块通过采集电路采集各路开关量和…...

用AI原生向量数据库Milvus Cloud 搭建一个 AI 聊天机器人

搭建聊天机器人 一切准备就绪后,就可以搭建聊天机器人了。 文档存储 机器人需要存储文档块以及使用 Towhee 提取出的文档块向量。在这个步骤中,我们需要用到 Milvus。 安装轻量版 Milvus Lite,使用以下命令运行 Milvus 服务器: (chatbot_venv) [egoebelbecker@ares milvus_…...

【OpenCV-Torch-dlib-ubuntu】Vm虚拟机linux环境摄像头调用方法与dilb模型探究

前言 随着金秋时节的来临&#xff0c;国庆和中秋的双重喜庆汇聚成一片温暖的节日氛围。在这个美好的时刻&#xff0c;我们有幸共同迎来一次长达8天的假期&#xff0c;为心灵充电&#xff0c;为身体放松&#xff0c;为未来充实自己。今年的国庆不仅仅是家国团聚的时刻&#xff…...

(二)详解观察者模式

一.使用场景 当我们需要一个类&#xff0c;在他的内部元素发生变化的时候可以主动通知其他类的时候&#xff0c;同时要保持良好的可拓展性&#xff0c;可以采用观察者模式。 二.核心 观察者模式出版者订阅者 我们拥有一个主题对象&#xff0c;和一些其他对象&#xff0c;包…...

嵌入式Linux应用开发-基础知识-第十九章驱动程序基石④

嵌入式Linux应用开发-基础知识-第十九章驱动程序基石④ 第十九章 驱动程序基石④19.7 工作队列19.7.1 内核函数19.7.1.1 定义 work19.7.1.2 使用 work&#xff1a;schedule_work19.7.1.3 其他函数 19.7.2 编程、上机19.7.3 内部机制19.7.3.1 Linux 2.x的工作队列创建过程19.7.3…...

2023 彩虹全新 SUP 模板,卡卡云模板修复版

2023 彩虹全新 SUP 模板&#xff0c;卡卡云模板&#xff0c;首页美化&#xff0c;登陆页美化&#xff0c;修复了 PC 端购物车页面显示不正常的问题。 使用教程 将这俩个数据库文件导入数据库&#xff1b; 其他的直接导入网站根目录覆盖就好&#xff1b; 若首页显示不正常&a…...

【AI视野·今日NLP 自然语言处理论文速览 第四十一期】Tue, 26 Sep 2023

AI视野今日CS.NLP 自然语言处理论文速览 Tue, 26 Sep 2023 Totally 75 papers &#x1f449;上期速览✈更多精彩请移步主页 Daily Computation and Language Papers Physics of Language Models: Part 3.1, Knowledge Storage and Extraction Authors Zeyuan Allen Zhu, Yuanz…...

【iptables 实战】05 iptables设置网络转发实验

一、网络架构 实验效果&#xff0c;通过机器B的转发功能&#xff0c;将机器A的报文转发到机器C 本实验准备三台机器分别配置如下网络 机器A ip:192.168.56.104 机器C ip:10.1.0.10 机器B 两张网卡&#xff0c;分别的ip是192.168.56.106和10.1.0.11 如图所示 如下图所示 二、…...

pygame - 贪吃蛇小游戏

蛇每吃掉一个身体块&#xff0c;蛇身就增加一个长度。为了统一计算&#xff0c;界面的尺寸和游戏元素的位置都是身体块长度的倍数 1. 上下左右方向键&#xff08;或者ASDW键&#xff09;控制蛇的移动方向 2. 空格键暂停和继续蛇的身体图片文件&#xff0c;复制到项目的asset\im…...

基于 QT 实现 Task Timer,高效利用时间

一、开发环境 Ubuntu 20.04 QT6.0 二、新建 Qt Wigets Application 这里的基类选择 Wigets&#xff0c; pro 配置文件添加 sql 模块&#xff0c;需要用到 sqlite&#xff0c; QT sql 三、添加数据库连接头文件 // connection.h #ifndef CONNECTION_H #define CONNECTION_…...

图像处理与计算机视觉--第五章-图像分割-霍夫变换

文章目录 1.霍夫变换(Hough Transform)原理介绍2.霍夫变换(Hough Transform)算法流程3.霍夫变换(Hough Transform)算法代码4.霍夫变换(Hough Transform)算法效果 1.霍夫变换(Hough Transform)原理介绍 Hough Transform是一种常用的计算机视觉图形检验方法&#xff0c;霍夫变换一…...

linux下文件操作命令

title: linux下文件操作命令 createTime: 2020-10-29 18:05:52 updateTime: 2020-10-29 18:05:52 categories: linux tags: Linux下文件操作命令 tar命令 使用tar命令一般打包分为两种*.tar ,*.tar.gz 相信大家也使用过tar -zcvf test.tar test/tar -zcvf test.tar.gz test/…...

Golang语法、技巧和窍门

Golang简介 命令式语言静态类型语法标记类似于C&#xff08;但括号较少且没有分号&#xff09;&#xff0c;结构类似Oberon-2编译为本机代码&#xff08;没有JVM&#xff09;没有类&#xff0c;但有带有方法的结构接口没有实现继承。不过有type嵌入。函数是一等公民函数可以返…...

Grander因果检验(格兰杰)原理+操作+解释

笔记来源&#xff1a; 1.【传送门】 2.【传送门】 前沿原理介绍 Grander因果检验是一种分析时间序列数据因果关系的方法。 基本思想在于&#xff0c;在控制Y的滞后项 (过去值) 的情况下&#xff0c;如果X的滞后项仍然有助于解释Y的当期值的变动&#xff0c;则认为 X对 Y产生…...

Python-Flask:编写自动化连接demo脚本:v1.0.0

主函数&#xff1a; # _*_ Coding : UTF-8 _*_ # Time : 13:14 # Author : YYZ # File : Flask # Project : Python_Project_爬虫 import jsonfrom flask import Flask,request,jsonify import sshapi Flask(__name__)# methods: 指定请求方式 接口解析参数host host_info[…...

关于nvm与node.js

1 安装nvm 安装过程中手动修改 nvm的安装路径&#xff0c; 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解&#xff0c;但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后&#xff0c;通常在该文件中会出现以下配置&…...

srs linux

下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935&#xff0c;SRS管理页面端口是8080&#xff0c;可…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)

骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术&#xff0c;它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton)&#xff1a;由层级结构的骨头组成&#xff0c;类似于人体骨骼蒙皮 (Mesh Skinning)&#xff1a;将模型网格顶点绑定到骨骼上&#xff0c;使骨骼移动…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)

船舶制造装配管理现状&#xff1a;装配工作依赖人工经验&#xff0c;装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书&#xff0c;但在实际执行中&#xff0c;工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现企业微信功能

1. 开发环境准备 ​​安装DevEco Studio 3.1​​&#xff1a; 从华为开发者官网下载最新版DevEco Studio安装HarmonyOS 5.0 SDK ​​项目配置​​&#xff1a; // module.json5 {"module": {"requestPermissions": [{"name": "ohos.permis…...

Qt的学习(一)

1.什么是Qt Qt特指用来进行桌面应用开发&#xff08;电脑上写的程序&#xff09;涉及到的一套技术Qt无法开发网页前端&#xff0c;也不能开发移动应用。 客户端开发的重要任务&#xff1a;编写和用户交互的界面。一般来说和用户交互的界面&#xff0c;有两种典型风格&…...

如何做好一份技术文档?从规划到实践的完整指南

如何做好一份技术文档&#xff1f;从规划到实践的完整指南 &#x1f31f; 嗨&#xff0c;我是IRpickstars&#xff01; &#x1f30c; 总有一行代码&#xff0c;能点亮万千星辰。 &#x1f50d; 在技术的宇宙中&#xff0c;我愿做永不停歇的探索者。 ✨ 用代码丈量世界&…...

Git 命令全流程总结

以下是从初始化到版本控制、查看记录、撤回操作的 Git 命令全流程总结&#xff0c;按操作场景分类整理&#xff1a; 一、初始化与基础操作 操作命令初始化仓库git init添加所有文件到暂存区git add .提交到本地仓库git commit -m "提交描述"首次提交需配置身份git c…...

Linux 内存管理调试分析:ftrace、perf、crash 的系统化使用

Linux 内存管理调试分析&#xff1a;ftrace、perf、crash 的系统化使用 Linux 内核内存管理是构成整个内核性能和系统稳定性的基础&#xff0c;但这一子系统结构复杂&#xff0c;常常有设置失败、性能展示不良、OOM 杀进程等问题。要分析这些问题&#xff0c;需要一套工具化、…...