图像处理与计算机视觉--第五章-图像分割-霍夫变换
文章目录
- 1.霍夫变换(Hough Transform)原理介绍
- 2.霍夫变换(Hough Transform)算法流程
- 3.霍夫变换(Hough Transform)算法代码
- 4.霍夫变换(Hough Transform)算法效果
1.霍夫变换(Hough Transform)原理介绍
Hough Transform是一种常用的计算机视觉图形检验方法,霍夫变换一般用于检验直线或者圆。
霍夫变换的原理具体如下所示:
假设图像中存在一条直线,表达式如下所示:
y = k x + b y=kx+b y=kx+b
假设我们任意指定一个点 ( x 0 , y 0 ) (x_{0},y_{0}) (x0,y0),则对于任意穿过该点的直线,一定有如下公式成立:
b = − k x 0 + y 0 b=-kx_{0}+y_{0} b=−kx0+y0
此时我将以x,y为轴的图像变为以b,k为轴的图像,此时该直线也能够进行变化,并且如上推导可知,对应的图像也是一条直线,如图所示:

进一步的,我们再从直线上取一点 ( x 1 , y 1 ) (x_{1},y_{1}) (x1,y1),则必有如下公式:
b = − k x 1 + y 1 b=-kx_{1}+y_{1} b=−kx1+y1
在图像上绘制会这样的函数,我们可知,两条直线相交于一点 ( k ∗ , b ∗ ) (k^{*},b^{*}) (k∗,b∗),而这个点就是x,y轴上的 ( x 1 , y 1 ) (x_{1},y_{1}) (x1,y1)和 ( x 0 , y 0 ) (x_{0},y_{0}) (x0,y0)两点所确定的直线。

但是我们在实际的直线检测中,我们不会用到上述的坐标系方法,上述的方法只是提供一个求解的思路,我们将使用极坐标方程来完成上述方法的求解,对于上述的直线,极坐标方程可以表示为:
ρ = x c o s θ + s i n θ \rho=xcos\theta+sin\theta ρ=xcosθ+sinθ
其中, θ \theta θ为直线的法线向量与x轴正向的夹角,而 ρ \rho ρ为坐标系原点至直线的垂直距离,如下图所示:

如下所示,我们可以发现,这条直线在极坐标下只有一个( ρ \rho ρ, θ \theta θ) 与之对应,改变一个参数大小变换到空域上的直线即会改变。而空域这条直线上的所有点都可以在极坐标为( ρ \rho ρ, θ \theta θ) 所表示的直线上 (如下图所示)

空域直线上的一个点在极坐标系下具体对应多少个极坐标对,取决于 θ \theta θ的步长 ,如果设步长为 β \beta β,则极坐标对n的表示如下所示:
n = 360 β n=\frac{360}{\beta} n=β360
对应的图片如下所示:

接下来我们假设空域上的三个点对应的极坐标曲线如下图的(a)所示,极坐标曲线同时经过一个点表示空域下有一条直线经过这三个点,只要寻找交点最多的点,在空域内就是要寻找的直线。

2.霍夫变换(Hough Transform)算法流程
·Hough变换直线检测的步骤如下:
1.设0的取值范围为[0,360],单位为度根据检测精度要求,采取适当的步长对角度和长度的取值范围进行离散化,形成0-p平面上的离散网格。
2.将每一个离散网格视为一个投票累加器,初始时全部清0。
3.遍历图像的所有像素,对于每个像素计算离散值0i和p=xcos0+ysin0.
4.对在参数空间中将对应的累加器中的值加1,从而完成求出相应的离散化值p,对于每个(p,0)该像素点的投票的投票之后,在离散化的参数空间中找出所累积的投票值
5.访问完所有的图像像素并完成所有,点这些点所对应的参数即为检测得到的直线的参数大于某给定闽值T的局部极大值点,
3.霍夫变换(Hough Transform)算法代码
import numpy as np
import cv2
from PIL import Image,ImageEnhance
import matplotlib.pyplot as plt
"""
hough变换是一种常用的计算机视觉图形检验方法,霍夫变换一般用于检验直线或者圆。"""
img = Image.open(r"C:\Users\Zeng Zhong Yan\Desktop\py.vs\python学习\test.webp")
#增强图像效果
img = ImageEnhance.Contrast(img).enhance(3)
img.show()
#处理成矩阵,便于后续处理
img = np.array(img)
#灰度处理
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#cv2.THRESH_OTSU具有双峰值,显示效果更好.
"""
cv2.THRESH_OTSU使用最小二乘法处理像素点。一般情况下,cv2.THRESH_OTSU适合双峰图。
cv2.THRESH_TRIANGLE使用三角算法处理像素点。一般情况下,cv2.THRESH_TRIANGLE适合单峰图。
"""
ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_OTSU)
#canny边缘检验算法处理
result = cv2.Canny(thresh, ret-30, ret+30, apertureSize=3)#霍夫变换检测直线
lines = cv2.HoughLinesP(result, 1, 1 * np.pi / 180, 10, minLineLength=10, maxLineGap=5)
# 画出检测的线段
for line in lines:for x1, y1, x2, y2 in line:cv2.line(img, (x1, y1), (x2, y2), (255, 0, 0),2)
img = Image.fromarray(img, 'RGB')
img.show()
4.霍夫变换(Hough Transform)算法效果
1.原先的图片如下所示:

2.霍夫变换后的检测直线的效果

相关文章:
图像处理与计算机视觉--第五章-图像分割-霍夫变换
文章目录 1.霍夫变换(Hough Transform)原理介绍2.霍夫变换(Hough Transform)算法流程3.霍夫变换(Hough Transform)算法代码4.霍夫变换(Hough Transform)算法效果 1.霍夫变换(Hough Transform)原理介绍 Hough Transform是一种常用的计算机视觉图形检验方法,霍夫变换一…...
linux下文件操作命令
title: linux下文件操作命令 createTime: 2020-10-29 18:05:52 updateTime: 2020-10-29 18:05:52 categories: linux tags: Linux下文件操作命令 tar命令 使用tar命令一般打包分为两种*.tar ,*.tar.gz 相信大家也使用过tar -zcvf test.tar test/tar -zcvf test.tar.gz test/…...
Golang语法、技巧和窍门
Golang简介 命令式语言静态类型语法标记类似于C(但括号较少且没有分号),结构类似Oberon-2编译为本机代码(没有JVM)没有类,但有带有方法的结构接口没有实现继承。不过有type嵌入。函数是一等公民函数可以返…...
Grander因果检验(格兰杰)原理+操作+解释
笔记来源: 1.【传送门】 2.【传送门】 前沿原理介绍 Grander因果检验是一种分析时间序列数据因果关系的方法。 基本思想在于,在控制Y的滞后项 (过去值) 的情况下,如果X的滞后项仍然有助于解释Y的当期值的变动,则认为 X对 Y产生…...
Python-Flask:编写自动化连接demo脚本:v1.0.0
主函数: # _*_ Coding : UTF-8 _*_ # Time : 13:14 # Author : YYZ # File : Flask # Project : Python_Project_爬虫 import jsonfrom flask import Flask,request,jsonify import sshapi Flask(__name__)# methods: 指定请求方式 接口解析参数host host_info[…...
kafka客户端应用参数详解
一、基本客户端收发消息 Kafka提供了非常简单的客户端API。只需要引入一个Maven依赖即可: <dependency><groupId>org.apache.kafka</groupId><artifactId>kafka_2.13</artifactId><version>3.4.0</version></depend…...
Apache Doris 行列转换可以这样玩
行列转换在做报表分析时还是经常会遇到的,今天就说一下如何实现行列转换吧。 行列转换就是如下图所示两种展示形式的互相转换 1. 行转列 我们来看一个简单的例子,我们要把下面这个表的数据,转换成图二的样式 image-20230914151818953.png …...
【Qt图形视图框架】自定义QGraphicsItem和QGraphicsView,实现鼠标(移动、缩放)及键盘事件、右键事件
自定义QGraphicsItem和QGraphicsView 说明示例myitem.hmyitem.cppmyview.hmyview.cpp调用main.cpp 效果 说明 在使用Qt的图形视图框架实现功能时,一般会在其基础上进行自定义功能实现。 如:滚轮对场景的缩放,鼠标拖动场景中的项,…...
C语言结构体指针学习
结构体变量存放内存中,也有起始地址,定义一个变量来存放这个地址,那这个变量就是结构体指针; typedef struct mydata{int a1;int a2;int a3; }mydata;void CJgtzzView::OnDraw(CDC* pDC) {CJgtzzDoc* pDoc GetDocument();ASSERT…...
华为云云耀云服务器L实例评测|部署在线轻量级备忘录 memos
华为云云耀云服务器L实例评测|部署在线轻量级备忘录 memos 一、云耀云服务器L实例介绍1.1 云服务器介绍1.2 产品优势1.3 应用场景1.4 支持镜像 二、云耀云服务器L实例配置2.1 重置密码2.2 服务器连接2.3 安全组配置 三、部署 memos3.1 memos介绍3.2 Docker 环境搭建…...
详解Avast Driver Updater:电脑驱动更新工具的利器还是多余的软件?
亲爱的读者朋友们,你是不是经常为电脑的驱动问题而烦恼?如果是的话,你可能会对这款软件——Avast Driver Updater 电脑驱动更新工具感兴趣。但在你决定尝试之前,不妨先和我一起深入探讨一下它的优点、缺点以及它适用的使用场景。 …...
大数据Flink(九十五):DML:Window TopN
文章目录 DML:Window TopN DML:Window TopN Window TopN 定义(支持 Streaming):Window TopN 是一种特殊的 TopN,它的返回结果是每一个窗口内的 N 个最小值或者最大值。 应用场景...
使用OKHttpClient访问网络
使用OKHttpClient前要引入依赖: 在build.gradle(Moduel :app)中添加 implementation com.squareup.okhttp3:okhttp:3.14.1 implementation com.squareup.okhttp3:logging-interceptor:3.14.1 implementation com.squareup.okio:okio:1.6.0 1. GET(同步…...
maui 开发AMD CPU踩的坑。
刚换的 amd R7735HS 笔记本,8核16线程,32GB内存。性能得实强悍 。 当需要发布iOS版本时发现,我没有macos ,那就安装个vmware 吧。看了一下Apple 要求以后的发布的APP需要以xcode14.3或以后版本开发的版本,但xcode14.3…...
宝塔反代openai官方API接口详细教程,502 Bad Gateway问题解决
一、前言 宝塔反代openai官方API接口详细教程,实现国内使用ChatGPT502 Bad Gateway问题解决, 此方法最简单快捷,没有复杂步骤,不容易出错,即最简单,零代码、零部署的方法。 二、实现前提 一台海外VPS服务…...
【leetocde】128. 最长连续序列
给定一个未排序的整数数组 nums ,找出数字连续的最长序列(不要求序列元素在原数组中连续)的长度。 请你设计并实现时间复杂度为 O(n) 的算法解决此问题。 示例 1: 输入:nums [100,4,200,1,3,2] 输出:4 …...
【Vue3】动态 class 类
如果你想在 Vue.js 中动态设置元素的 class 类名,你可以使用以下两种主要方式: 绑定一个动态的 class 对象:你可以使用 v-bind 或简写的 : 来绑定一个包含类名的对象,其中类名的键是类名字符串,值是一个布尔值或计算属…...
【Redis】redis基本数据类型详解(String、List、Hash、Set、ZSet)
目录 RedisString(字符串)List(列表)Hash(字典)Set(集合)ZSet(有序集合) Redis Redis有5种基本的数据结构,分别为:string(字符串)、list(列表)、set(集合)、hash(哈希&a…...
ubuntu源码安装aria2
github:GitHub - aria2/aria2: aria2 is a lightweight multi-protocol & multi-source, cross platform download utility operated in command-line. It supports HTTP/HTTPS, FTP, SFTP, BitTorrent and Metalink. 发行说明:GitHub - aria2/aria2 at releas…...
【多任务案例:猫狗脸部定位与分类】
【猫狗脸部定位与识别】 1 引言2 损失函数3 The Oxford-IIIT Pet Dataset数据集4 数据预处理4 创建模型输入5 自定义数据集加载方式6 显示一批次数据7 创建定位模型8 模型训练9 绘制损失曲线10 模型保存与预测 1 引言 猫狗脸部定位与识别分为定位和识别,即定位猫狗…...
KubeSphere 容器平台高可用:环境搭建与可视化操作指南
Linux_k8s篇 欢迎来到Linux的世界,看笔记好好学多敲多打,每个人都是大神! 题目:KubeSphere 容器平台高可用:环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...
利用ngx_stream_return_module构建简易 TCP/UDP 响应网关
一、模块概述 ngx_stream_return_module 提供了一个极简的指令: return <value>;在收到客户端连接后,立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量(如 $time_iso8601、$remote_addr 等)&a…...
从WWDC看苹果产品发展的规律
WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...
通过Wrangler CLI在worker中创建数据库和表
官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...
P3 QT项目----记事本(3.8)
3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...
NFT模式:数字资产确权与链游经济系统构建
NFT模式:数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新:构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议:基于LayerZero协议实现以太坊、Solana等公链资产互通,通过零知…...
AspectJ 在 Android 中的完整使用指南
一、环境配置(Gradle 7.0 适配) 1. 项目级 build.gradle // 注意:沪江插件已停更,推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...
【Java学习笔记】BigInteger 和 BigDecimal 类
BigInteger 和 BigDecimal 类 二者共有的常见方法 方法功能add加subtract减multiply乘divide除 注意点:传参类型必须是类对象 一、BigInteger 1. 作用:适合保存比较大的整型数 2. 使用说明 创建BigInteger对象 传入字符串 3. 代码示例 import j…...
【生成模型】视频生成论文调研
工作清单 上游应用方向:控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...
C#中的CLR属性、依赖属性与附加属性
CLR属性的主要特征 封装性: 隐藏字段的实现细节 提供对字段的受控访问 访问控制: 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性: 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑: 可以…...
