当前位置: 首页 > news >正文

图像处理与计算机视觉--第五章-图像分割-霍夫变换

文章目录

      • 1.霍夫变换(Hough Transform)原理介绍
      • 2.霍夫变换(Hough Transform)算法流程
      • 3.霍夫变换(Hough Transform)算法代码
      • 4.霍夫变换(Hough Transform)算法效果

1.霍夫变换(Hough Transform)原理介绍

 Hough Transform是一种常用的计算机视觉图形检验方法,霍夫变换一般用于检验直线或者圆。

 霍夫变换的原理具体如下所示:
 假设图像中存在一条直线,表达式如下所示:
y = k x + b y=kx+b y=kx+b
 假设我们任意指定一个点 ( x 0 , y 0 ) (x_{0},y_{0}) (x0,y0),则对于任意穿过该点的直线,一定有如下公式成立:
b = − k x 0 + y 0 b=-kx_{0}+y_{0} b=kx0+y0
 此时我将以x,y为轴的图像变为以b,k为轴的图像,此时该直线也能够进行变化,并且如上推导可知,对应的图像也是一条直线,如图所示:
在这里插入图片描述
 进一步的,我们再从直线上取一点 ( x 1 , y 1 ) (x_{1},y_{1}) (x1,y1),则必有如下公式:
b = − k x 1 + y 1 b=-kx_{1}+y_{1} b=kx1+y1
 在图像上绘制会这样的函数,我们可知,两条直线相交于一点 ( k ∗ , b ∗ ) (k^{*},b^{*}) (k,b),而这个点就是x,y轴上的 ( x 1 , y 1 ) (x_{1},y_{1}) (x1,y1) ( x 0 , y 0 ) (x_{0},y_{0}) (x0,y0)两点所确定的直线。
![在这里插入图片描述](https://img-blog.csdnimg.cn/905cb7cad8ce40eaa338bde0626db96d.png
 但是我们在实际的直线检测中,我们不会用到上述的坐标系方法,上述的方法只是提供一个求解的思路,我们将使用极坐标方程来完成上述方法的求解,对于上述的直线,极坐标方程可以表示为:
ρ = x c o s θ + s i n θ \rho=xcos\theta+sin\theta ρ=xcosθ+sinθ
 其中, θ \theta θ为直线的法线向量与x轴正向的夹角,而 ρ \rho ρ为坐标系原点至直线的垂直距离,如下图所示:
在这里插入图片描述
 如下所示,我们可以发现,这条直线在极坐标下只有一个( ρ \rho ρ, θ \theta θ) 与之对应,改变一个参数大小变换到空域上的直线即会改变。而空域这条直线上的所有点都可以在极坐标为( ρ \rho ρ, θ \theta θ) 所表示的直线上 (如下图所示)
在这里插入图片描述
 空域直线上的一个点在极坐标系下具体对应多少个极坐标对,取决于 θ \theta θ的步长 ,如果设步长为 β \beta β,则极坐标对n的表示如下所示:
n = 360 β n=\frac{360}{\beta} n=β360
 对应的图片如下所示:
在这里插入图片描述
 接下来我们假设空域上的三个点对应的极坐标曲线如下图的(a)所示,极坐标曲线同时经过一个点表示空域下有一条直线经过这三个点,只要寻找交点最多的点,在空域内就是要寻找的直线。
在这里插入图片描述

2.霍夫变换(Hough Transform)算法流程

·Hough变换直线检测的步骤如下:
1.0的取值范围为[0,360],单位为度根据检测精度要求,采取适当的步长对角度和长度的取值范围进行离散化,形成0-p平面上的离散网格。
2.将每一个离散网格视为一个投票累加器,初始时全部清03.遍历图像的所有像素,对于每个像素计算离散值0i和p=xcos0+ysin0.
4.对在参数空间中将对应的累加器中的值加1,从而完成求出相应的离散化值p,对于每个(p,0)该像素点的投票的投票之后,在离散化的参数空间中找出所累积的投票值
5.访问完所有的图像像素并完成所有,点这些点所对应的参数即为检测得到的直线的参数大于某给定闽值T的局部极大值点,

3.霍夫变换(Hough Transform)算法代码

import numpy as np
import cv2
from PIL import Image,ImageEnhance 
import matplotlib.pyplot as plt
"""
hough变换是一种常用的计算机视觉图形检验方法,霍夫变换一般用于检验直线或者圆。"""
img = Image.open(r"C:\Users\Zeng Zhong Yan\Desktop\py.vs\python学习\test.webp")
#增强图像效果
img = ImageEnhance.Contrast(img).enhance(3)
img.show()
#处理成矩阵,便于后续处理
img = np.array(img)
#灰度处理
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#cv2.THRESH_OTSU具有双峰值,显示效果更好.
"""
cv2.THRESH_OTSU使用最小二乘法处理像素点。一般情况下,cv2.THRESH_OTSU适合双峰图。
cv2.THRESH_TRIANGLE使用三角算法处理像素点。一般情况下,cv2.THRESH_TRIANGLE适合单峰图。
"""
ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_OTSU)
#canny边缘检验算法处理
result = cv2.Canny(thresh, ret-30, ret+30, apertureSize=3)#霍夫变换检测直线
lines = cv2.HoughLinesP(result, 1, 1 * np.pi / 180, 10, minLineLength=10, maxLineGap=5)
# 画出检测的线段
for line in lines:for x1, y1, x2, y2 in line:cv2.line(img, (x1, y1), (x2, y2), (255, 0, 0),2)
img = Image.fromarray(img, 'RGB')
img.show()

4.霍夫变换(Hough Transform)算法效果

1.原先的图片如下所示:
在这里插入图片描述
2.霍夫变换后的检测直线的效果
在这里插入图片描述

相关文章:

图像处理与计算机视觉--第五章-图像分割-霍夫变换

文章目录 1.霍夫变换(Hough Transform)原理介绍2.霍夫变换(Hough Transform)算法流程3.霍夫变换(Hough Transform)算法代码4.霍夫变换(Hough Transform)算法效果 1.霍夫变换(Hough Transform)原理介绍 Hough Transform是一种常用的计算机视觉图形检验方法,霍夫变换一…...

linux下文件操作命令

title: linux下文件操作命令 createTime: 2020-10-29 18:05:52 updateTime: 2020-10-29 18:05:52 categories: linux tags: Linux下文件操作命令 tar命令 使用tar命令一般打包分为两种*.tar ,*.tar.gz 相信大家也使用过tar -zcvf test.tar test/tar -zcvf test.tar.gz test/…...

Golang语法、技巧和窍门

Golang简介 命令式语言静态类型语法标记类似于C(但括号较少且没有分号),结构类似Oberon-2编译为本机代码(没有JVM)没有类,但有带有方法的结构接口没有实现继承。不过有type嵌入。函数是一等公民函数可以返…...

Grander因果检验(格兰杰)原理+操作+解释

笔记来源: 1.【传送门】 2.【传送门】 前沿原理介绍 Grander因果检验是一种分析时间序列数据因果关系的方法。 基本思想在于,在控制Y的滞后项 (过去值) 的情况下,如果X的滞后项仍然有助于解释Y的当期值的变动,则认为 X对 Y产生…...

Python-Flask:编写自动化连接demo脚本:v1.0.0

主函数: # _*_ Coding : UTF-8 _*_ # Time : 13:14 # Author : YYZ # File : Flask # Project : Python_Project_爬虫 import jsonfrom flask import Flask,request,jsonify import sshapi Flask(__name__)# methods: 指定请求方式 接口解析参数host host_info[…...

kafka客户端应用参数详解

一、基本客户端收发消息 Kafka提供了非常简单的客户端API。只需要引入一个Maven依赖即可&#xff1a; <dependency><groupId>org.apache.kafka</groupId><artifactId>kafka_2.13</artifactId><version>3.4.0</version></depend…...

Apache Doris 行列转换可以这样玩

行列转换在做报表分析时还是经常会遇到的&#xff0c;今天就说一下如何实现行列转换吧。 行列转换就是如下图所示两种展示形式的互相转换 1. 行转列 我们来看一个简单的例子&#xff0c;我们要把下面这个表的数据&#xff0c;转换成图二的样式 image-20230914151818953.png …...

【Qt图形视图框架】自定义QGraphicsItem和QGraphicsView,实现鼠标(移动、缩放)及键盘事件、右键事件

自定义QGraphicsItem和QGraphicsView 说明示例myitem.hmyitem.cppmyview.hmyview.cpp调用main.cpp 效果 说明 在使用Qt的图形视图框架实现功能时&#xff0c;一般会在其基础上进行自定义功能实现。 如&#xff1a;滚轮对场景的缩放&#xff0c;鼠标拖动场景中的项&#xff0c;…...

C语言结构体指针学习

结构体变量存放内存中&#xff0c;也有起始地址&#xff0c;定义一个变量来存放这个地址&#xff0c;那这个变量就是结构体指针&#xff1b; typedef struct mydata{int a1;int a2;int a3; }mydata;void CJgtzzView::OnDraw(CDC* pDC) {CJgtzzDoc* pDoc GetDocument();ASSERT…...

华为云云耀云服务器L实例评测|部署在线轻量级备忘录 memos

华为云云耀云服务器L实例评测&#xff5c;部署在线轻量级备忘录 memos 一、云耀云服务器L实例介绍1.1 云服务器介绍1.2 产品优势1.3 应用场景1.4 支持镜像 二、云耀云服务器L实例配置2.1 重置密码2.2 服务器连接2.3 安全组配置 三、部署 memos3.1 memos介绍3.2 Docker 环境搭建…...

详解Avast Driver Updater:电脑驱动更新工具的利器还是多余的软件?

亲爱的读者朋友们&#xff0c;你是不是经常为电脑的驱动问题而烦恼&#xff1f;如果是的话&#xff0c;你可能会对这款软件——Avast Driver Updater 电脑驱动更新工具感兴趣。但在你决定尝试之前&#xff0c;不妨先和我一起深入探讨一下它的优点、缺点以及它适用的使用场景。 …...

大数据Flink(九十五):DML:Window TopN

文章目录 DML:Window TopN DML:Window TopN Window TopN 定义(支持 Streaming):Window TopN 是一种特殊的 TopN,它的返回结果是每一个窗口内的 N 个最小值或者最大值。 应用场景...

使用OKHttpClient访问网络

使用OKHttpClient前要引入依赖&#xff1a; 在build.gradle(Moduel :app)中添加 implementation com.squareup.okhttp3:okhttp:3.14.1 implementation com.squareup.okhttp3:logging-interceptor:3.14.1 implementation com.squareup.okio:okio:1.6.0 1. GET&#xff08;同步…...

maui 开发AMD CPU踩的坑。

刚换的 amd R7735HS 笔记本&#xff0c;8核16线程&#xff0c;32GB内存。性能得实强悍 。 当需要发布iOS版本时发现&#xff0c;我没有macos &#xff0c;那就安装个vmware 吧。看了一下Apple 要求以后的发布的APP需要以xcode14.3或以后版本开发的版本&#xff0c;但xcode14.3…...

宝塔反代openai官方API接口详细教程,502 Bad Gateway问题解决

一、前言 宝塔反代openai官方API接口详细教程&#xff0c;实现国内使用ChatGPT502 Bad Gateway问题解决&#xff0c; 此方法最简单快捷&#xff0c;没有复杂步骤&#xff0c;不容易出错&#xff0c;即最简单&#xff0c;零代码、零部署的方法。 二、实现前提 一台海外VPS服务…...

【leetocde】128. 最长连续序列

给定一个未排序的整数数组 nums &#xff0c;找出数字连续的最长序列&#xff08;不要求序列元素在原数组中连续&#xff09;的长度。 请你设计并实现时间复杂度为 O(n) 的算法解决此问题。 示例 1&#xff1a; 输入&#xff1a;nums [100,4,200,1,3,2] 输出&#xff1a;4 …...

【Vue3】动态 class 类

如果你想在 Vue.js 中动态设置元素的 class 类名&#xff0c;你可以使用以下两种主要方式&#xff1a; 绑定一个动态的 class 对象&#xff1a;你可以使用 v-bind 或简写的 : 来绑定一个包含类名的对象&#xff0c;其中类名的键是类名字符串&#xff0c;值是一个布尔值或计算属…...

【Redis】redis基本数据类型详解(String、List、Hash、Set、ZSet)

目录 RedisString(字符串)List(列表)Hash(字典)Set(集合)ZSet(有序集合) Redis Redis有5种基本的数据结构&#xff0c;分别为&#xff1a;string&#xff08;字符串&#xff09;、list&#xff08;列表&#xff09;、set&#xff08;集合&#xff09;、hash&#xff08;哈希&a…...

ubuntu源码安装aria2

github:GitHub - aria2/aria2: aria2 is a lightweight multi-protocol & multi-source, cross platform download utility operated in command-line. It supports HTTP/HTTPS, FTP, SFTP, BitTorrent and Metalink. 发行说明&#xff1a;GitHub - aria2/aria2 at releas…...

【多任务案例:猫狗脸部定位与分类】

【猫狗脸部定位与识别】 1 引言2 损失函数3 The Oxford-IIIT Pet Dataset数据集4 数据预处理4 创建模型输入5 自定义数据集加载方式6 显示一批次数据7 创建定位模型8 模型训练9 绘制损失曲线10 模型保存与预测 1 引言 猫狗脸部定位与识别分为定位和识别&#xff0c;即定位猫狗…...

【Axure高保真原型】引导弹窗

今天和大家中分享引导弹窗的原型模板&#xff0c;载入页面后&#xff0c;会显示引导弹窗&#xff0c;适用于引导用户使用页面&#xff0c;点击完成后&#xff0c;会显示下一个引导弹窗&#xff0c;直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻

在如今就业市场竞争日益激烈的背景下&#xff0c;越来越多的求职者将目光投向了日本及中日双语岗位。但是&#xff0c;一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧&#xff1f;面对生疏的日语交流环境&#xff0c;即便提前恶补了…...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括&#xff1a;采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中&#xff0c;设置任务排序规则尤其重要&#xff0c;因为它让看板视觉上直观地体…...

可靠性+灵活性:电力载波技术在楼宇自控中的核心价值

可靠性灵活性&#xff1a;电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中&#xff0c;电力载波技术&#xff08;PLC&#xff09;凭借其独特的优势&#xff0c;正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据&#xff0c;无需额外布…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

3-11单元格区域边界定位(End属性)学习笔记

返回一个Range 对象&#xff0c;只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意&#xff1a;它移动的位置必须是相连的有内容的单元格…...

DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”

目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)

引言 工欲善其事&#xff0c;必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后&#xff0c;我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集&#xff0c;就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...

高考志愿填报管理系统---开发介绍

高考志愿填报管理系统是一款专为教育机构、学校和教师设计的学生信息管理和志愿填报辅助平台。系统基于Django框架开发&#xff0c;采用现代化的Web技术&#xff0c;为教育工作者提供高效、安全、便捷的学生管理解决方案。 ## &#x1f4cb; 系统概述 ### &#x1f3af; 系统定…...