当前位置: 首页 > news >正文

Unity实现设计模式——状态模式

Unity实现设计模式——状态模式

状态模式最核心的设计思路就是将对象的状态抽象出一个接口,然后根据它的不同状态封装其行为,这样就可以实现状态和行为的绑定,最终实现对象和状态的有效解耦。

在实际开发中一般用到FSM有限状态机的实现,GF框架中的FSM和流程控制就是基于这个原理实现的。
在这里插入图片描述

1.State(状态的抽象基类)

    public abstract class State{protected Context m_Context = null;public State(Context theContext){m_Context = theContext;}public abstract void Handle(int Value);}

2.ConcreteStateA,ConcreteStateB,ConcreteStateC

状态State的子类

    /// <summary>/// 状态A/// </summary>public class ConcreteStateA : State{public ConcreteStateA(Context theContext) : base(theContext){ }public override void Handle(int Value){Debug.Log("ConcreteStateA.Handle");if (Value > 10)m_Context.SetState(new ConcreteStateB(m_Context));}}/// <summary>/// 状态B/// </summary>public class ConcreteStateB : State{public ConcreteStateB(Context theContext) : base(theContext){ }public override void Handle(int Value){Debug.Log("ConcreteStateB.Handle");if (Value > 20)m_Context.SetState(new ConcreteStateC(m_Context));}}/// <summary>/// 状态C/// </summary>public class ConcreteStateC : State{public ConcreteStateC(Context theContext) : base(theContext){ }public override void Handle(int Value){Debug.Log("ConcreteStateC.Handle");if (Value > 30)m_Context.SetState(new ConcreteStateA(m_Context));}}

3.Context

Context类-持有目前的状态,并将相关信息传给状态

    public class Context{State m_State = null;public void Request(int Value){m_State.Handle(Value);}public void SetState(State theState){Debug.Log("Context.SetState:" + theState);m_State = theState;}}

4.测试代码

    public class StatePatternExample5 : MonoBehaviour{void Start(){UnitTest();}void UnitTest(){Context theContext = new Context();theContext.SetState(new ConcreteStateA(theContext));theContext.Request(5);theContext.Request(15);theContext.Request(25);theContext.Request(35);}}

相关文章:

Unity实现设计模式——状态模式

Unity实现设计模式——状态模式 状态模式最核心的设计思路就是将对象的状态抽象出一个接口&#xff0c;然后根据它的不同状态封装其行为&#xff0c;这样就可以实现状态和行为的绑定&#xff0c;最终实现对象和状态的有效解耦。 在实际开发中一般用到FSM有限状态机的实现&…...

差分数组的应用技巧

前缀和技巧 针对的算法场景是不需要对原始数组进行修改的情况下&#xff0c;频繁查询某个区间的累加和。 差分数组 主要适用场景是频繁对原始数组的某个区间的元素进行增减。 相关题目 1094. 拼车 1109. 航班预订统计 370. 区间加法 # 1094. 拼车 class Solution:def carPool…...

斯坦福数据挖掘教程·第三版》读书笔记(英文版)Chapter 10 Mining Social-Network Graphs

来源&#xff1a;《斯坦福数据挖掘教程第三版》对应的公开英文书和PPT。 Chapter 10 Mining Social-Network Graphs The essential characteristics of a social network are: There is a collection of entities that participate in the network. Typically, these entiti…...

DFS:842. 排列数字

给定一个整数 nn&#xff0c;将数字 1∼n1∼n 排成一排&#xff0c;将会有很多种排列方法。 现在&#xff0c;请你按照字典序将所有的排列方法输出。 输入格式 共一行&#xff0c;包含一个整数 nn。 输出格式 按字典序输出所有排列方案&#xff0c;每个方案占一行。 数据…...

pytorch之nn.Conv1d详解

自然语言处理中一个句子序列&#xff0c;一维的&#xff0c;所以使用Conv1d...

H5生成二维码

H5生成二维码&#xff1a; 1.引入js库&#xff0c;可自行点击链接复制使用 <script type"text/javascript" src"http://static.runoob.com/assets/qrcode/qrcode.min.js"></script>2.加入二维码占位区HTML <div id"qrCode">…...

Three.js加载360全景图片/视频

Three.js加载360全景图片/视频 效果 原理 将全景图片/视频作为texture引入到three.js场景中将贴图与球形网格模型融合&#xff0c;将球模型当做成环境容器使用处理视频时需要以dom为载体&#xff0c;加载与控制视频动作每次渲染时更新当前texture&#xff0c;以达到视频播放效…...

北大硕士7年嵌入式学习经验分享

阶段 1 大一到大三这个阶段我与大多数学生相同&#xff1a; 学习本专业知识&#xff08;EE专业&#xff09;&#xff0c;学习嵌入式软件开发需要的计算机课程&#xff08;汇编原理&#xff0c;计算机组成原理&#xff0c;操作系统&#xff0c;C语言等&#xff09;&#xff0c…...

华为鸿蒙手表开发之动态生成二维码

华为鸿蒙手表开发之动态生成二维码 前言&#xff1a; 最近入职新公司&#xff0c;由于之前的哥们临时离职&#xff0c;走得很突然&#xff0c;所以没有任何交接和文档&#xff0c;临时顶上公司手表应用的上架&#xff0c;更换了新的密钥和key之后重新测试功能和流程&#xff…...

2023-09-28 monetdb-databae的概念和作用-分析

摘要: 每个数据库对于db,schema以及user,role都有一套自己的设计, 不同数据库间对于相同名字的东西例如database和schema可以说南辕北辙, 例如mysql中schema其实是database的同义词. 本文分析monetdb的database的概念和作用 database的概念和作用: 和mysql的database完全不同…...

2024级199管理类联考之数学基础(上篇)

管理类考试介绍 管理综合200分,时间3小时 数学&#xff1a;75分/25题,是拉开差距的核心模块 问题求解题&#xff1a;15个,5选一条件充分性判断&#xff1a;10个,结合两个条件选择答案 条件一充分,条件二不充分&#xff1a;A条件一不充分,条件二充分&#xff1a;B条件一充分,条…...

RFID技术引领汽车零部件加工新时代

RFID技术的兴起引领了汽车零部件加工领域的新时代&#xff0c;作为一种利用无线电频率进行自动识别的技术&#xff0c;RFID技术能够快速、准确地识别物体并获取相关数据&#xff0c;在汽车零部件加工中&#xff0c;RFID技术具有重要的应用价值&#xff0c;可以提高生产效率、降…...

python中使用matplotlib绘图

一、背景 当我们在写python程序时&#xff0c;不可避免的需要将数据可视化&#xff0c;也就是绘制出数据的曲线图&#xff0c;以便我们更直观的观察数据间的变化&#xff0c;和方便对比。此时就要用到matplotlib库了。 matplotlib官方给出的定义是&#xff1a; 翻译过来也就是…...

Qt Creator 使用技巧

使用技巧 功能快捷键解释Switch Header/SourceF4在同名的头文件和源程序文件之间切换Follow Symbol Under CursorF2变量:跳转到声明;函数:声明和定义切换Refactor Rename Symbol Under CursorCtrlShiftR改名称&#xff0c;将替换所有用到这个符号的地方RefactorAdd Definition…...

来看看双阶段目标检测算法趴

&#x1f680; 作者 &#xff1a;“码上有钱” &#x1f680; 文章简介 &#xff1a;AI-目标检测算法 &#x1f680; 欢迎小伙伴们 点赞&#x1f44d;、收藏⭐、留言&#x1f4ac;简介 双阶段目标检测算法是一类深度学习算法&#xff0c;通常分为两个阶段来检测和识别图像中的…...

python利用matplotlib绘图,对于中文和负号不显示,显示方框“口口”完美解决办法!!

文章目录 一、问题展示二、问题分析三、解决办法四、结果展示 一、问题展示 二、问题分析 可以发现对中文&#xff0c;以及负号不显示。 三、解决办法 import matplotlib.pyplot as pltplt.rcParams[font.sans-serif] [usimHei] # 显示中文 plt.rcParams[axes.unicode_mi…...

【数组及指针经典笔试题解析】

1.数组和指针笔试题 题目1 int main(){int a[5] { 1&#xff0c;2&#xff0c;3&#xff0c;4&#xff0c;5};int * ptr (int * )(&a 1);printf("%d&#xff0c;%d"&#xff0c;*(a 1)&#xff0c;*(ptr - 1));return 0;}图文解析&#xff1a; int * ptr …...

Transformer学习-self-attention

这里写自定义目录标题 Self-attentionMulti-head self-attention用self-attention解决其他问题 Self-attention 用Wq、Wk、Wv分别乘输入向量得到q、k、v向量 用每个q向量乘所有的k向量得到对应项的attention&#xff0c;即用每项的query向量去匹配所有的key向量&#xff0c;得…...

Spring Boot:利用JPA进行数据库的增改

目录 JPA介绍Service接口Service和Autowired示例代码 Dao数据库操作层Repository示例代码 控制器文件示例代码-增加增加成功示例代码-修改修改成功 JPA介绍 JPA&#xff08;Javaa Persistence API)一种用于持久化 Java 对象到关系型数据库的标准规范。它提供了一种统一的方式来…...

列表的增删改查和遍历

任务概念 什么是任务 任务是一个参数为指针&#xff0c;无法返回的函数&#xff0c;函数体为死循环不能返回任务的实现过程 每个任务是独立的&#xff0c;需要为任务分别分配栈称为任务栈&#xff0c;通常是预定义的全局数组&#xff0c;也可以是动态分配的一段内存空间&#…...

shell脚本--常见案例

1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件&#xff1a; 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

QT: `long long` 类型转换为 `QString` 2025.6.5

在 Qt 中&#xff0c;将 long long 类型转换为 QString 可以通过以下两种常用方法实现&#xff1a; 方法 1&#xff1a;使用 QString::number() 直接调用 QString 的静态方法 number()&#xff0c;将数值转换为字符串&#xff1a; long long value 1234567890123456789LL; …...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...

iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈

在日常iOS开发过程中&#xff0c;性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期&#xff0c;开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发&#xff0c;但背后往往隐藏着系统资源调度不当…...

[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.

ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #&#xff1a…...

STM32---外部32.768K晶振(LSE)无法起振问题

晶振是否起振主要就检查两个1、晶振与MCU是否兼容&#xff1b;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容&#xff08;CL&#xff09;与匹配电容&#xff08;CL1、CL2&#xff09;的关系 2. 如何选择 CL1 和 CL…...

高分辨率图像合成归一化流扩展

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 1 摘要 我们提出了STARFlow&#xff0c;一种基于归一化流的可扩展生成模型&#xff0c;它在高分辨率图像合成方面取得了强大的性能。STARFlow的主要构建块是Transformer自回归流&#xff08;TARFlow&am…...

k8s从入门到放弃之Pod的容器探针检测

k8s从入门到放弃之Pod的容器探针检测 在Kubernetes&#xff08;简称K8s&#xff09;中&#xff0c;容器探测是指kubelet对容器执行定期诊断的过程&#xff0c;以确保容器中的应用程序处于预期的状态。这些探测是保障应用健康和高可用性的重要机制。Kubernetes提供了两种种类型…...

LeetCode 0386.字典序排数:细心总结条件

【LetMeFly】386.字典序排数&#xff1a;细心总结条件 力扣题目链接&#xff1a;https://leetcode.cn/problems/lexicographical-numbers/ 给你一个整数 n &#xff0c;按字典序返回范围 [1, n] 内所有整数。 你必须设计一个时间复杂度为 O(n) 且使用 O(1) 额外空间的算法。…...