当前位置: 首页 > news >正文

使用序列到序列深度学习方法自动睡眠阶段评分

深度学习方法,用于使用单通道脑电图进行自动睡眠阶段评分。

 

def build_firstPart_model(input_var,keep_prob_=0.5):# List to store the output of each CNNsoutput_conns = []######### CNNs with small filter size at the first layer ########## Convolutionnetwork = tf.layers.conv1d(inputs=input_var, filters=64, kernel_size=50, strides=6,padding='same', activation=tf.nn.relu)network = tf.layers.max_pooling1d(inputs=network, pool_size=8, strides=8, padding='same')# Dropoutnetwork = tf.nn.dropout(network, keep_prob_)# Convolutionnetwork = tf.layers.conv1d(inputs=network, filters=128, kernel_size=8, strides=1,padding='same', activation=tf.nn.relu)network = tf.layers.conv1d(inputs=network, filters=128, kernel_size=8, strides=1,padding='same', activation=tf.nn.relu)network = tf.layers.conv1d(inputs=network, filters=128, kernel_size=8, strides=1,padding='same', activation=tf.nn.relu)# Max poolingnetwork = tf.layers.max_pooling1d(inputs=network, pool_size=4, strides=4, padding='same')# Flattennetwork = flatten(name="flat1", input_var=network)output_conns.append(network)######### CNNs with large filter size at the first layer ########## Convolutionnetwork = tf.layers.conv1d(inputs=input_var, filters=64, kernel_size=400, strides=50,padding='same', activation=tf.nn.relu)network = tf.layers.max_pooling1d(inputs=network, pool_size=4, strides=4, padding='same')# Dropoutnetwork = tf.nn.dropout(network, keep_prob_)# Convolutionnetwork = tf.layers.conv1d(inputs=network, filters=128, kernel_size=6, strides=1,padding='same', activation=tf.nn.relu)network = tf.layers.conv1d(inputs=network, filters=128, kernel_size=6, strides=1,padding='same', activation=tf.nn.relu)network = tf.layers.conv1d(inputs=network, filters=128, kernel_size=6, strides=1,padding='same', activation=tf.nn.relu)# Max poolingnetwork = tf.layers.max_pooling1d(inputs=network, pool_size=2, strides=2, padding='same')# Flattennetwork = flatten(name="flat2", input_var=network)output_conns.append(network)# Concatnetwork = tf.concat(output_conns,1, name="concat1")# Dropoutnetwork = tf.nn.dropout(network, keep_prob_)return network

相关文章:

使用序列到序列深度学习方法自动睡眠阶段评分

深度学习方法,用于使用单通道脑电图进行自动睡眠阶段评分。 def build_firstPart_model(input_var,keep_prob_0.5):# List to store the output of each CNNsoutput_conns []######### CNNs with small filter size at the first layer ########## Convolutionnetw…...

【算法】排序——选择排序和交换排序(快速排序)

主页点击直达:个人主页 我的小仓库:代码仓库 C语言偷着笑:C语言专栏 数据结构挨打小记:初阶数据结构专栏 Linux被操作记:Linux专栏 LeetCode刷题掉发记:LeetCode刷题 算法头疼记:算法专栏…...

Docker 容器监控 - Weave Scope

Author:rab 目录 前言一、环境二、部署三、监控3.1 容器监控 - 单 Host3.2 容器监控 - 多 Host 总结 前言 Docker 容器的监控方式有很多,如 cAdvisor、Prometheus 等。今天我们来看看其另一种监控方式 —— Weave Scope,此监控方法似乎用的人…...

Spring Boot集成redis集群拓扑动态刷新

项目场景: Spring Boot集成Redis集群,使用lettuce连接Cluster集群实例。 问题描述 redis其中一个节点挂了之后,springboot集成redis集群配置信息没有及时刷新,出现读取操作报错。 java.lang.IllegalArgumentException: Connec…...

COCI2022-2023#1 Neboderi

P9032 [COCI2022-2023#1] Neboderi 题目大意 有一个长度为 n n n的序列 h i h_i hi​,你需要从中选择一个长度大于等于 k k k的子区间 [ l , r ] [l,r] [l,r],使得 g ( h l h l 1 ⋯ h r ) g\times (h_lh_{l1}\cdotsh_r) g(hl​hl1​⋯hr​)最小&…...

由于找不到d3dx9_43.dll无法继续执行此代码怎么解决?全面解析d3dx9_43.dll

在使用计算机过程中,我们可能会遇到各种各样的问题。其中之一就是d3dx9_43.dll文件丢失的问题。这个问题通常会出现在运行某些应用程序或游戏时,导致程序无法正常启动或运行。那么,如何解决这个问题呢?小编将为您提供一些解决方案…...

Linux--网络编程-字节序

进程间的通信: 管道、消息队列、共享内存、信号、信号量。 特点:都依赖于linux内核。 缺陷:无法多机通信。 一、网络编程: 1、地址:基于网络,ip地址端口号。 端口号作用: 一台拥有ip地址的主机…...

python实现http/https拦截

python实现http拦截 前言:为什么要使用http拦截一、技术调研二、技术选择三、使用方法前言:为什么要使用http拦截 大多数爬虫玩家会直接选择API请求数据,但是有的网站需要解决扫码登录、Cookie校验、数字签名等,这种方法实现时间长,难度高。需求里面不需要高并发,有没有…...

农产品团购配送商城小程序的作用是什么

农产品覆盖稻麦油蛋等多种细分类目,各地区经营商家众多,随着人们生活品质提升,对食物的要求也在提升,绿色无污染无激素的农产品往往受到不少人喜爱,而在销售中,也有不少人选择自建商城线上经营。 通过【雨…...

使用van-dialog二次封装微信小程序模态框

由于微信小程序的wx.showModal不支持富文本内容&#xff0c;无法实现更灵活的展示效果&#xff0c;故需要进行二次封装 实现思路&#xff1a;使用van-dialog以及微信小程序的rich-text实现 代码如下&#xff1a; // index.wxml <van-dialoguse-slottitle"提示"s…...

生鲜蔬果同城配送社区团购小程序商城的作用是什么

生鲜蔬果行业作为市场主要支撑之一&#xff0c;从业商家众多的同时消费者也从不缺&#xff0c;尤其对中高城市&#xff0c;生鲜蔬果除了传统线下超市、市场经营外&#xff0c;线上更是受到大量消费者信任&#xff0c;而很多商家也是自建了生鲜蔬果商城多场景生意经营。 那么通…...

Unity实现设计模式——状态模式

Unity实现设计模式——状态模式 状态模式最核心的设计思路就是将对象的状态抽象出一个接口&#xff0c;然后根据它的不同状态封装其行为&#xff0c;这样就可以实现状态和行为的绑定&#xff0c;最终实现对象和状态的有效解耦。 在实际开发中一般用到FSM有限状态机的实现&…...

差分数组的应用技巧

前缀和技巧 针对的算法场景是不需要对原始数组进行修改的情况下&#xff0c;频繁查询某个区间的累加和。 差分数组 主要适用场景是频繁对原始数组的某个区间的元素进行增减。 相关题目 1094. 拼车 1109. 航班预订统计 370. 区间加法 # 1094. 拼车 class Solution:def carPool…...

斯坦福数据挖掘教程·第三版》读书笔记(英文版)Chapter 10 Mining Social-Network Graphs

来源&#xff1a;《斯坦福数据挖掘教程第三版》对应的公开英文书和PPT。 Chapter 10 Mining Social-Network Graphs The essential characteristics of a social network are: There is a collection of entities that participate in the network. Typically, these entiti…...

DFS:842. 排列数字

给定一个整数 nn&#xff0c;将数字 1∼n1∼n 排成一排&#xff0c;将会有很多种排列方法。 现在&#xff0c;请你按照字典序将所有的排列方法输出。 输入格式 共一行&#xff0c;包含一个整数 nn。 输出格式 按字典序输出所有排列方案&#xff0c;每个方案占一行。 数据…...

pytorch之nn.Conv1d详解

自然语言处理中一个句子序列&#xff0c;一维的&#xff0c;所以使用Conv1d...

H5生成二维码

H5生成二维码&#xff1a; 1.引入js库&#xff0c;可自行点击链接复制使用 <script type"text/javascript" src"http://static.runoob.com/assets/qrcode/qrcode.min.js"></script>2.加入二维码占位区HTML <div id"qrCode">…...

Three.js加载360全景图片/视频

Three.js加载360全景图片/视频 效果 原理 将全景图片/视频作为texture引入到three.js场景中将贴图与球形网格模型融合&#xff0c;将球模型当做成环境容器使用处理视频时需要以dom为载体&#xff0c;加载与控制视频动作每次渲染时更新当前texture&#xff0c;以达到视频播放效…...

北大硕士7年嵌入式学习经验分享

阶段 1 大一到大三这个阶段我与大多数学生相同&#xff1a; 学习本专业知识&#xff08;EE专业&#xff09;&#xff0c;学习嵌入式软件开发需要的计算机课程&#xff08;汇编原理&#xff0c;计算机组成原理&#xff0c;操作系统&#xff0c;C语言等&#xff09;&#xff0c…...

华为鸿蒙手表开发之动态生成二维码

华为鸿蒙手表开发之动态生成二维码 前言&#xff1a; 最近入职新公司&#xff0c;由于之前的哥们临时离职&#xff0c;走得很突然&#xff0c;所以没有任何交接和文档&#xff0c;临时顶上公司手表应用的上架&#xff0c;更换了新的密钥和key之后重新测试功能和流程&#xff…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互

物理引擎&#xff08;Physics Engine&#xff09; 物理引擎 是一种通过计算机模拟物理规律&#xff08;如力学、碰撞、重力、流体动力学等&#xff09;的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互&#xff0c;广泛应用于 游戏开发、动画制作、虚…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU&#xff1a;如何让RNN变得更聪明&#xff1f; 在深度学习的世界里&#xff0c;循环神经网络&#xff08;RNN&#xff09;以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而&#xff0c;传统RNN存在的一个严重问题——梯度消失&#…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享

文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的&#xff0c;根据Excel列的需求预估的工时直接打骨折&#xff0c;不要问我为什么&#xff0c;主要…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案

随着新能源汽车的快速普及&#xff0c;充电桩作为核心配套设施&#xff0c;其安全性与可靠性备受关注。然而&#xff0c;在高温、高负荷运行环境下&#xff0c;充电桩的散热问题与消防安全隐患日益凸显&#xff0c;成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成

厌倦手动写WordPress文章&#xff1f;AI自动生成&#xff0c;效率提升10倍&#xff01; 支持多语言、自动配图、定时发布&#xff0c;让内容创作更轻松&#xff01; AI内容生成 → 不想每天写文章&#xff1f;AI一键生成高质量内容&#xff01;多语言支持 → 跨境电商必备&am…...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库&#xff0c;例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体&#xff0c;比如 SnowballFight、Huggy the Do…...

重启Eureka集群中的节点,对已经注册的服务有什么影响

先看答案&#xff0c;如果正确地操作&#xff0c;重启Eureka集群中的节点&#xff0c;对已经注册的服务影响非常小&#xff0c;甚至可以做到无感知。 但如果操作不当&#xff0c;可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...

MySQL 知识小结(一)

一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库&#xff0c;分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷&#xff0c;但是文件存放起来数据比较冗余&#xff0c;用二进制能够更好管理咱们M…...

Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)

引言 工欲善其事&#xff0c;必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后&#xff0c;我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集&#xff0c;就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...

【C++】纯虚函数类外可以写实现吗?

1. 答案 先说答案&#xff0c;可以。 2.代码测试 .h头文件 #include <iostream> #include <string>// 抽象基类 class AbstractBase { public:AbstractBase() default;virtual ~AbstractBase() default; // 默认析构函数public:virtual int PureVirtualFunct…...