COCI2022-2023#1 Neboderi
P9032 [COCI2022-2023#1] Neboderi
题目大意
有一个长度为 n n n的序列 h i h_i hi,你需要从中选择一个长度大于等于 k k k的子区间 [ l , r ] [l,r] [l,r],使得 g × ( h l + h l + 1 + ⋯ + h r ) g\times (h_l+h_{l+1}+\cdots+h_r) g×(hl+hl+1+⋯+hr)最小,其中 g = gcd ( h l , h l + 1 , … , h r ) g=\gcd(h_l,h_{l+1},\dots,h_r) g=gcd(hl,hl+1,…,hr)。
1 ≤ k ≤ n ≤ 1 0 6 , 1 ≤ h i ≤ 1 0 6 1\leq k\leq n\leq 10^6,1\leq h_i\leq 10^6 1≤k≤n≤106,1≤hi≤106
题解
当确定了 l l l时, gcd ( h l , h l + 1 , … , h r ) \gcd(h_l,h_{l+1},\dots,h_r) gcd(hl,hl+1,…,hr)随着 r r r的增大而减小。
每当 gcd \gcd gcd减小时,其 gcd \gcd gcd相对于原来的 gcd \gcd gcd肯定有若干个质因数的次数减小。那么,对于一个确定的 l l l, gcd ( h l , h l + 1 , … , h r ) \gcd(h_l,h_{l+1},\dots,h_r) gcd(hl,hl+1,…,hr)的取值不会超过 log a l \log a_l logal个数。
先用 S T ST ST表维护区间 gcd \gcd gcd。枚举 l l l,在二分每一段 g c d gcd gcd值相等的区间并取该区间的右端点作为 r r r来更新答案。
设 v v v为 a i a_i ai的最大值,则时间复杂度为 O ( n log n log v ) O(n\log n\log v) O(nlognlogv)。
当然,这是跑不满的,而且时限为 2.50 s 2.50s 2.50s,所以可以过。
code
#include<iostream>
#include<cstdio>
using namespace std;
const int N=1000000;
int n,k,now,v[N+5],lg[N+5],f[N+5][20];
long long ans=0,sum[N+5];
int gcd(int i,int j){while(j){i%=j;swap(i,j);}return i;
}
int gt(int l,int r){int x=lg[r-l+1];return gcd(f[l][x],f[r-(1<<x)+1][x]);
}
int to(int w,int be,int hv){int l=be+1,r=n,mid;while(l<=r){mid=l+r>>1;if(gt(w,mid)>=hv) l=mid+1;else r=mid-1;}return l-1;
}
int main()
{scanf("%d%d",&n,&k);lg[0]=-1;for(int i=1;i<=n;i++){lg[i]=lg[i/2]+1;scanf("%d",&v[i]);sum[i]=sum[i-1]+v[i];f[i][0]=v[i];}for(int i=1;i<=19;i++){for(int j=1;j<=n-(1<<i-1);j++){f[j][i]=gcd(f[j][i-1],f[j+(1<<i-1)][i-1]);}}for(int l=1,r;l<=n-k+1;l++){now=gt(l,l+k-1);r=to(l,l+k-1,now);while(r<=n){ans=max(ans,gt(l,r)*(sum[r]-sum[l-1]));if(r==n) break;now=gt(l,r+1);r=to(l,r+1,now);}}printf("%lld",ans);return 0;
}
相关文章:
COCI2022-2023#1 Neboderi
P9032 [COCI2022-2023#1] Neboderi 题目大意 有一个长度为 n n n的序列 h i h_i hi,你需要从中选择一个长度大于等于 k k k的子区间 [ l , r ] [l,r] [l,r],使得 g ( h l h l 1 ⋯ h r ) g\times (h_lh_{l1}\cdotsh_r) g(hlhl1⋯hr)最小&…...
由于找不到d3dx9_43.dll无法继续执行此代码怎么解决?全面解析d3dx9_43.dll
在使用计算机过程中,我们可能会遇到各种各样的问题。其中之一就是d3dx9_43.dll文件丢失的问题。这个问题通常会出现在运行某些应用程序或游戏时,导致程序无法正常启动或运行。那么,如何解决这个问题呢?小编将为您提供一些解决方案…...
Linux--网络编程-字节序
进程间的通信: 管道、消息队列、共享内存、信号、信号量。 特点:都依赖于linux内核。 缺陷:无法多机通信。 一、网络编程: 1、地址:基于网络,ip地址端口号。 端口号作用: 一台拥有ip地址的主机…...
python实现http/https拦截
python实现http拦截 前言:为什么要使用http拦截一、技术调研二、技术选择三、使用方法前言:为什么要使用http拦截 大多数爬虫玩家会直接选择API请求数据,但是有的网站需要解决扫码登录、Cookie校验、数字签名等,这种方法实现时间长,难度高。需求里面不需要高并发,有没有…...
农产品团购配送商城小程序的作用是什么
农产品覆盖稻麦油蛋等多种细分类目,各地区经营商家众多,随着人们生活品质提升,对食物的要求也在提升,绿色无污染无激素的农产品往往受到不少人喜爱,而在销售中,也有不少人选择自建商城线上经营。 通过【雨…...
使用van-dialog二次封装微信小程序模态框
由于微信小程序的wx.showModal不支持富文本内容,无法实现更灵活的展示效果,故需要进行二次封装 实现思路:使用van-dialog以及微信小程序的rich-text实现 代码如下: // index.wxml <van-dialoguse-slottitle"提示"s…...
生鲜蔬果同城配送社区团购小程序商城的作用是什么
生鲜蔬果行业作为市场主要支撑之一,从业商家众多的同时消费者也从不缺,尤其对中高城市,生鲜蔬果除了传统线下超市、市场经营外,线上更是受到大量消费者信任,而很多商家也是自建了生鲜蔬果商城多场景生意经营。 那么通…...
Unity实现设计模式——状态模式
Unity实现设计模式——状态模式 状态模式最核心的设计思路就是将对象的状态抽象出一个接口,然后根据它的不同状态封装其行为,这样就可以实现状态和行为的绑定,最终实现对象和状态的有效解耦。 在实际开发中一般用到FSM有限状态机的实现&…...
差分数组的应用技巧
前缀和技巧 针对的算法场景是不需要对原始数组进行修改的情况下,频繁查询某个区间的累加和。 差分数组 主要适用场景是频繁对原始数组的某个区间的元素进行增减。 相关题目 1094. 拼车 1109. 航班预订统计 370. 区间加法 # 1094. 拼车 class Solution:def carPool…...
斯坦福数据挖掘教程·第三版》读书笔记(英文版)Chapter 10 Mining Social-Network Graphs
来源:《斯坦福数据挖掘教程第三版》对应的公开英文书和PPT。 Chapter 10 Mining Social-Network Graphs The essential characteristics of a social network are: There is a collection of entities that participate in the network. Typically, these entiti…...
DFS:842. 排列数字
给定一个整数 nn,将数字 1∼n1∼n 排成一排,将会有很多种排列方法。 现在,请你按照字典序将所有的排列方法输出。 输入格式 共一行,包含一个整数 nn。 输出格式 按字典序输出所有排列方案,每个方案占一行。 数据…...
pytorch之nn.Conv1d详解
自然语言处理中一个句子序列,一维的,所以使用Conv1d...
H5生成二维码
H5生成二维码: 1.引入js库,可自行点击链接复制使用 <script type"text/javascript" src"http://static.runoob.com/assets/qrcode/qrcode.min.js"></script>2.加入二维码占位区HTML <div id"qrCode">…...
Three.js加载360全景图片/视频
Three.js加载360全景图片/视频 效果 原理 将全景图片/视频作为texture引入到three.js场景中将贴图与球形网格模型融合,将球模型当做成环境容器使用处理视频时需要以dom为载体,加载与控制视频动作每次渲染时更新当前texture,以达到视频播放效…...
北大硕士7年嵌入式学习经验分享
阶段 1 大一到大三这个阶段我与大多数学生相同: 学习本专业知识(EE专业),学习嵌入式软件开发需要的计算机课程(汇编原理,计算机组成原理,操作系统,C语言等),…...
华为鸿蒙手表开发之动态生成二维码
华为鸿蒙手表开发之动态生成二维码 前言: 最近入职新公司,由于之前的哥们临时离职,走得很突然,所以没有任何交接和文档,临时顶上公司手表应用的上架,更换了新的密钥和key之后重新测试功能和流程ÿ…...
2023-09-28 monetdb-databae的概念和作用-分析
摘要: 每个数据库对于db,schema以及user,role都有一套自己的设计, 不同数据库间对于相同名字的东西例如database和schema可以说南辕北辙, 例如mysql中schema其实是database的同义词. 本文分析monetdb的database的概念和作用 database的概念和作用: 和mysql的database完全不同…...
2024级199管理类联考之数学基础(上篇)
管理类考试介绍 管理综合200分,时间3小时 数学:75分/25题,是拉开差距的核心模块 问题求解题:15个,5选一条件充分性判断:10个,结合两个条件选择答案 条件一充分,条件二不充分:A条件一不充分,条件二充分:B条件一充分,条…...
RFID技术引领汽车零部件加工新时代
RFID技术的兴起引领了汽车零部件加工领域的新时代,作为一种利用无线电频率进行自动识别的技术,RFID技术能够快速、准确地识别物体并获取相关数据,在汽车零部件加工中,RFID技术具有重要的应用价值,可以提高生产效率、降…...
python中使用matplotlib绘图
一、背景 当我们在写python程序时,不可避免的需要将数据可视化,也就是绘制出数据的曲线图,以便我们更直观的观察数据间的变化,和方便对比。此时就要用到matplotlib库了。 matplotlib官方给出的定义是: 翻译过来也就是…...
利用最小二乘法找圆心和半径
#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...
深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...
css实现圆环展示百分比,根据值动态展示所占比例
代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...
C++中string流知识详解和示例
一、概览与类体系 C 提供三种基于内存字符串的流,定义在 <sstream> 中: std::istringstream:输入流,从已有字符串中读取并解析。std::ostringstream:输出流,向内部缓冲区写入内容,最终取…...
GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...
七、数据库的完整性
七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...
【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信 BLE Mesh协议的拓扑结构 定向转发机制
目录 节点的功能承载层(GATT/Adv)局限性: 拓扑关系定向转发机制定向转发意义 CG 节点的功能 节点的功能由节点支持的特性和功能决定。所有节点都能够发送和接收网格消息。节点还可以选择支持一个或多个附加功能,如 Configuration …...
【安全篇】金刚不坏之身:整合 Spring Security + JWT 实现无状态认证与授权
摘要 本文是《Spring Boot 实战派》系列的第四篇。我们将直面所有 Web 应用都无法回避的核心问题:安全。文章将详细阐述认证(Authentication) 与授权(Authorization的核心概念,对比传统 Session-Cookie 与现代 JWT(JS…...
Monorepo架构: Nx Cloud 扩展能力与缓存加速
借助 Nx Cloud 实现项目协同与加速构建 1 ) 缓存工作原理分析 在了解了本地缓存和远程缓存之后,我们来探究缓存是如何工作的。以计算文件的哈希串为例,若后续运行任务时文件哈希串未变,系统会直接使用对应的输出和制品文件。 2 …...
二维FDTD算法仿真
二维FDTD算法仿真,并带完全匹配层,输入波形为高斯波、平面波 FDTD_二维/FDTD.zip , 6075 FDTD_二维/FDTD_31.m , 1029 FDTD_二维/FDTD_32.m , 2806 FDTD_二维/FDTD_33.m , 3782 FDTD_二维/FDTD_34.m , 4182 FDTD_二维/FDTD_35.m , 4793...
