当前位置: 首页 > news >正文

BP神经网络的MATLAB实现(含源代码)

BP(back propagation)神经网络是1986年由Rumelhart和McClelland为首的科学家提出的概念,是一种按照误差逆向传播算法训练的多层前馈神经网络,是应用最广泛的神经网络模型之一

具体数学推导以及原理在本文不做详细介绍,本文将使用MATLAB进行BP神经网络的应用与实践

1 BP神经网络结构

在这里插入图片描述
BP神经网络是一种多层前馈神经网络,其主要特点是:信号是前向传播,误差是后向传播。经典的BP神经网络具有三层网络结构,分别为输入层,隐含层,输出层。输入变量X1,X2,经过BP神经网络训练,可得到需要的预测输出Y。

2 代码结构

第一部分 初始化
使用 clear clc等命令对matlab进行初始化
第二部分 导入数据
加载数据集data.mat,此部分需要替换为自己的数据,该数据集需包含输入的X,需要预测输出的Y,然后通过dividerand函数将训练集和测试集分为7:3,也可调整为8:2。
第三部分 数据归一化
归一化是将样本的特征值转换到同一量纲下把数据映射到[-1, 1]区间内,归一化的作用以及函数的使用可以自行百度
第四部分 构造网络结构
输入层节点数是由输入数据组数决定,隐含层节点数由经验公式可得(2倍输入节点数+1),输出节点输出数据组数决定,然后使用newff进行网络训练,( { ‘logsig’ ‘purelin’ } , ‘trainlm’)此处为输入层激活函数,输出层激活函数,训练方法。
第五部分 测试集预测
使用训练好的神经网络对测试集进行测试,并显示输出相关数据。

3 Tips

1 BP神经网络每次训练结果都不一样,此为神经网络特性,选择效果好的一次网络即可,可使用save net 命令保存网络与load net加载网络命令进行复现
2 使用BP神经网络需要大量的数据训练效果才比较好
3 结果不理想时,可通过调整第四部分代码(调整训练目标,训练次数等参数)来得到较好的结果
4 有不理解的函数部分可通过查询MATLAB官方手册查询,本文不再提供代码解答

4 源代码

%% BP神经网络预测
clear  
clc
close all
warning off;
tic
%% 导入数据
load data.mat
[trainInd,valInd,testInd] = dividerand(size(X,2),0.7,0,0.3);P_train=X(:,trainInd);
T_train=Y(:,trainInd);
P_test=X(:,testInd);
T_test=Y(:,testInd);%% 归一化
% 训练集
[Pn_train,inputps] = mapminmax(P_train,-1,1);
Pn_test = mapminmax('apply',P_test,inputps);
% 测试集
[Tn_train,outputps] = mapminmax(T_train,-1,1);
Tn_test = mapminmax('apply',T_test,outputps);%% 构造网络结构
%创建神经网络
inputnum = 2;     %inputnum  输入层节点数 4维特征
hiddennum = 5;     %hiddennum  隐含层节点数
outputnum = 1;     %outputnum  隐含层节点数
net = newff( minmax(Pn_train) , [hiddennum outputnum] , { 'logsig' 'purelin' } , 'trainlm' ) ;
%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 200 ;
net.trainparam.goal = 0.001 ;
net.trainParam.lr = 0.01 ;
net = train( net, Pn_train , Tn_train ) ;%% 测试集预测
TestResults = sim(net,Pn_test);
TestResults = mapminmax('reverse',TestResults,outputps); %反归一化
TestError = TestResults - T_test;
TestMSE = mse(TestError);figure
plot(T_test,'b-');
hold on
plot(TestResults,'r-');
legend('真实值','预测值');
title('测试集预测结果');
grid onfigure
plot(TestError,'r-');
title('测试集误差')
grid on[~,len]=size(T_test);
MAE1=sum(abs(TestError./T_test))/len;
MSE1=TestError*TestError'/len;
RMSE1=MSE1^(1/2);
R = corrcoef(T_test,TestResults);
r = R(1,2);
disp(['........BP神经网络测试集误差计算................'])
disp(['平均绝对误差MAE为:',num2str(MAE1)])
disp(['均方误差为MSE:',num2str(MSE1)])
disp(['均方根误差RMSE为:',num2str(RMSE1)])
disp(['决定系数 R^2为:',num2str(r)])toc

相关文章:

BP神经网络的MATLAB实现(含源代码)

BP(back propagation)神经网络是1986年由Rumelhart和McClelland为首的科学家提出的概念,是一种按照误差逆向传播算法训练的多层前馈神经网络,是应用最广泛的神经网络模型之一 具体数学推导以及原理在本文不做详细介绍,本文将使用MATLAB进行B…...

AES和Rijndael的区别

快速链接: . 👉👉👉 个人博客笔记导读目录(全部) 👈👈👈 付费专栏-付费课程 【购买须知】:密码学实践强化训练–【目录】 👈👈👈“Rijndael” 这个词的中文谐音可以近似地发音为 “瑞恩达尔”。请注意,这只是一种近似的发音方式,因为该词是荷兰姓氏 “Ri…...

【数据结构】—堆详解(手把手带你用C语言实现)

食用指南:本文在有C基础的情况下食用更佳 🔥这就不得不推荐此专栏了:C语言 ♈️今日夜电波:水星—今泉愛夏 1:10 ━━━━━━️💟──────── 4:23 …...

关于算法复杂度的几张表

算法在改进今天的计算机与古代的计算机的区别 去除冗余 数据点 算法复杂度 傅里叶变换...

蓝桥杯每日一题2023.10.1

路径 - 蓝桥云课 (lanqiao.cn) 题目分析 求最短路问题,有多种解法,下面介绍两种蓝桥杯最常用到的两种解法 方法一 Floyd(求任意两点之间的最短路)注:不能有负权回路 初始化每个点到每个点的距离都为0x3f这样才能对…...

第三章:最新版零基础学习 PYTHON 教程(第十节 - Python 运算符—Python 中的运算符重载)

运算符重载意味着赋予超出其预定义操作含义的扩展含义。例如,运算符 + 用于添加两个整数以及连接两个字符串和合并两个列表。这是可以实现的,因为“+”运算符被 int 类和 str 类重载。您可能已经注意到,相同的内置运算符或函数对于不同类的对象显示不同的行为,这称为运算符…...

Nacos 实现服务平滑上下线(Ribbon 和 LB)

前言 不知道各位在使用 SpringCloud Gateway Nacos的时候有没有遇到过服务刚上线偶尔会出现一段时间的503 Service Unavailable,或者服务下线后,下线服务仍然被调用的问题。而以上问题都是由于Ribbon或者LoadBalancer的默认处理策略有关,其…...

c/c++里 对 共用体 union 的内存分配

对union 的内存分配,是按照最大的那个成员分配的。 谢谢...

博途SCL区间搜索指令(判断某个数属于某个区间)

S型速度曲线行车位置控制,停靠位置搜索功能会用到区间搜索指令,下面我们详细介绍区间搜索指令的相关应用。 S型加减速行车位置控制(支持点动和停车位置搜索)-CSDN博客S型加减速位置控制详细算法和应用场景介绍,请查看下面文章博客。本篇文章不再赘述,这里主要介绍点动动和…...

(三)激光线扫描-中心线提取

光条纹中心提取算法是决定线结构光三维重建精度以及光条纹轮廓定位准确性的重要因素。 1. 光条的高斯分布 激光线条和打手电筒一样,中间最亮,越像周围延申,光强越弱,这个规则符合高斯分布,如下图。 2. 传统光条纹中心提取算法 传统的光条纹中心提取算法有 灰度重心法、…...

递归与分治算法(1)--经典递归、分治问题

目录 一、递归问题 1、斐波那契数列 2、汉诺塔问题 3、全排列问题 4、整数划分问题 二、递归式求解 1、代入法 2、递归树法 3、主定理法 三、 分治问题 1、二分搜索 2、大整数乘法 一、递归问题 1、斐波那契数列 斐波那契数列不用过多介绍,斐波那契提出…...

Java之SpringCloud Alibaba【六】【Alibaba微服务分布式事务组件—Seata】

一、事务简介 事务(Transaction)是访问并可能更新数据库中各种数据项的一个程序执行单元(unit)。 在关系数据库中,一个事务由一组SQL语句组成。 事务应该具有4个属性: 原子性、一致性、隔离性、持久性。这四个属性通常称为ACID特性。 原子性(atomicity) ∶个事务…...

Android逆向学习(五)app进行动态调试

Android逆向学习(五)app进行动态调试 一、写在前面 非常抱歉鸽了那么久,前一段时间一直在忙,现在终于结束了,可以继续更新android逆向系列的,这个系列我会尽力做下去,然后如果可以的话我看看能…...

音频编辑软件Steinberg SpectraLayers Pro mac中文软件介绍

Steinberg SpectraLayers Pro mac是一款专业的音频编辑软件,旨在帮助音频专业人士进行精细的音频编辑和声音处理。它提供了强大的频谱编辑功能,可以对音频文件进行深入的频谱分析和编辑。 Steinberg SpectraLayers Pro mac软件特点 1. 频谱编辑&#xff…...

基于.Net Core实现自定义皮肤WidForm窗口

前言 今天一起来实现基于.Net Core、Windows Form实现自定义窗口皮肤,并实现窗口移动功能。 素材 准备素材:边框、标题栏、关闭按钮图标。 窗体设计 1、创建Window窗体项目 2、窗体设计 拖拉4个Panel控件,分别用于:标题栏、关…...

【Rust】操作日期与时间

目录 介绍 一、计算耗时 二、时间加减法 三、时区转换 四、年月日时分秒 五、时间格式化 介绍 Rust的时间操作主要用到chrono库,接下来我将简单选一些常用的操作进行介绍,如果想了解更多细节,请查看官方文档。 官方文档:chr…...

blender快捷键

1, shift a 添加物体 2,ctrl alt q 切换四格视图 3, ~ 展示物体的各个视图按钮,(~ 就是tab键上面的键) 4,a 全选,全选后,点 ctrl 鼠标框选 减去已经选择的&#xff1b…...

java Spring Boot 自动启动热部署 (别再改点东西就要重启啦)

上文 java Spring Boot 手动启动热部署 我们实现了一个手动热部署的代码 但其实很多人会觉得 这叫说明热开发呀 这么捞 写完还要手动去点一下 很不友好 其实我们开发人员肯定是希望重启这种事不需要自己手动去做 那么 当然可以 我们就让它自己去做 Build Project 这个操作 我们…...

TouchGFX之后端通信

在大多数应用中,UI需以某种方式连接到系统的其余部分,并发送和接收数据。 它可能会与硬件外设(传感器数据、模数转换和串行通信等)或其他软件模块进行交互通讯。 Model类​ 所有TouchGFX应用都有Model类,Model类除了存…...

cesium gltf控制

gltf格式详解 glTF格式本质上是一个JSON文件。这一文件描述了整个3D场景的内容。它包含了对场景结构进行描述的场景图。场景中的3D对象通过场景结点引用网格进行定义。材质定义了3D对象的外观,动画定义了3D对象的变换操作(比如选择、平移操作)。蒙皮定义了3D对象如何进行骨骼…...

IDEA运行Tomcat出现乱码问题解决汇总

最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...

Spring Boot 实现流式响应(兼容 2.7.x)

在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...

在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能

下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能,包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

测试markdown--肇兴

day1: 1、去程:7:04 --11:32高铁 高铁右转上售票大厅2楼,穿过候车厅下一楼,上大巴车 ¥10/人 **2、到达:**12点多到达寨子,买门票,美团/抖音:¥78人 3、中饭&a…...

CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云

目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...

图表类系列各种样式PPT模版分享

图标图表系列PPT模版,柱状图PPT模版,线状图PPT模版,折线图PPT模版,饼状图PPT模版,雷达图PPT模版,树状图PPT模版 图表类系列各种样式PPT模版分享:图表系列PPT模板https://pan.quark.cn/s/20d40aa…...

如何在最短时间内提升打ctf(web)的水平?

刚刚刷完2遍 bugku 的 web 题,前来答题。 每个人对刷题理解是不同,有的人是看了writeup就等于刷了,有的人是收藏了writeup就等于刷了,有的人是跟着writeup做了一遍就等于刷了,还有的人是独立思考做了一遍就等于刷了。…...

dify打造数据可视化图表

一、概述 在日常工作和学习中,我们经常需要和数据打交道。无论是分析报告、项目展示,还是简单的数据洞察,一个清晰直观的图表,往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server,由蚂蚁集团 AntV 团队…...