XrayGLM - 医学大模型
文章目录
- 关于 XrayGLM
- 研究背景
- VisualGLM-6B
关于 XrayGLM
XrayGLM: 首个会看胸部X光片的中文多模态医学大模型 | The first Chinese Medical Multimodal Model that Chest Radiographs Summarization.
基于VisualGLM-6B 微调
- github : https://github.com/WangRongsheng/XrayGLM
研究背景
MiniGPT-4 [1] 在500万全英文数据集(LAION+CC3M+CC12M+SBU)上预训练,并在3200多张高质量图像数 据描述上进行微调。
希望有一个原生支持中文预训练的多 模态模型来支持我们的一些工作
通用领域的多模态大模型风声水起,如MiniGPT-4,然而,此类多模态大模型却很少出现在医学领域的研 究中,阻碍了相关研究发展。
MedCLIP 提出了 X-ray 和配对报告的公开数据集。XrayGPT 基于 MiniGPT-4 的思路训练了一个X-ray的医学多模态模型。
OpenI 一份是来自印第安纳大学医院的胸部 X 光图 像数据集,包含 6,459 张图像和 3,955 份报告。
VisualGLM-6B
VisualGLM-6B [1] 是一个开源的,支持图像、中文和英文的多模态对话语言模型,语言模型基 于 ChatGLM-6B,具有 62 亿参数;
图像部分通 过训练 BLIP2-Qformer 构建起视觉模型与语言 模型的桥梁,整体模型共78亿参数。
VisualGLM-6B 依靠来自于 CogView 数据集的 30M高质量中文图文对,与300M经过筛选的 英文图文对进行预训练,中英文权重相同。该 训练方式较好地将视觉信息对齐到ChatGLM的 语义空间;之后的微调阶段,模型在长视觉问 答数据上训练,以生成符合人类偏好的答案。
XrayGLM基于VisualGLM-6B进行微调训练而来。借助ChatGPT构建了一个可用于支持中文训练的X-ray影像- 诊疗报告对。
XrayGLM微调实践
1、克隆XrayGLM repo:
git clone https://github.com/WangRongsheng/XrayGLM.git
2、 安装依赖:
pip install -r requirements.txt
# 国内换源安装依赖
pip install -i https://mirrors.aliyun.com/pypi/simple/ -r requirements.txt
3、准备数据集:
./data/Xray/
├── 1000_1.png
├── 1000_2.png
├── ...
└── openi-zh.json
4、配置训练文件finetune_XrayGLM.sh
5、开启微调训练:
# 报错:CUDA out of memory. Tried to allocate 20.00 MiB (GPU 4; 3.82 GiB total capacity; 2.94 GiB already allocated; 6.62 MiB free; 3.06 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF# 设置CUDA变量,解决直接训练而出现无法正确加载到显卡问题 export CUDA_VISIBLE_DEVICES=0,1,2,3# 开始训练
bash finetune_XrayGLM.sh# 训练过程很快,四卡A100训练2-3个小时就可以完成!
6、CLI测试:
python cli_demo.py \
--from_pretrained checkpoints/$fintune_weights$ \ --prompt_zh '详细描述这张胸部X光片的诊断结果'
- max_length: 总序列的最大长度
- top_p
- top_k
- temperature:采样温度
- …
7、WebUI测试:
python web_demo.py \
--from_pretrained checkpoints/$fintune_weights$
1、不同的prompt构建对于整个模型的回答是否有影响?
{"img": "fewshot-data/pig.png", "prompt": "这张图片的背景里有什么内容?", "label": "这张图片的背景是是虚化的。"},
{"img": "fewshot-data/meme.png", "prompt": "这张图片的背景里有什么内容?", "label": "这张图片的背景是蓝色的木质地板。"},{"img": "./data/Xray/162_1.png", "prompt": "通过这张胸部光照片,可以诊断出什么?", "label": "根据X射线图像,心脏大小正常,胃部看起来很清晰。已经排除了胃炎、积液、水肿、气胸、腰病、结节或胃块的存在。该发现表明一切正常。
2、大模型训练中,训练的精度(int4,int8,float16…)不是特别重要,模型的参数(6B、13B…) 很影响模型的性能。
3、如果数据多的话可以考虑增加训练的参数,目前的训练脚本只训练了2层lora:
https://github.com/THUDM/VisualGLM-6B/issues/61#issuecomment-1562856845
未来展望
- 模型的能力更多来源于数据的支持,OpenI-zh作为微调数据集,其数据量足以支持研究,在更广泛的 任务和性能表现上,我们认为在大规模数据集上预训练并在高质量少量数据集上微调是一种可行的方案;
- 普遍意义的理解上,视觉多模态模型=视觉模型+语言模型。除了需要关注视觉模型信息与语言模型输 出的搭配外,还需要额外关注到语言模型的加强,在人机的对话中,尤其是医疗语言模型的问答上,除 了专业的医疗问题回答,带有人文情怀的有温度的回答更应该是我们追寻的目标;
2023-10-03
相关文章:
XrayGLM - 医学大模型
文章目录 关于 XrayGLM研究背景VisualGLM-6B 关于 XrayGLM XrayGLM: 首个会看胸部X光片的中文多模态医学大模型 | The first Chinese Medical Multimodal Model that Chest Radiographs Summarization. 基于VisualGLM-6B 微调 github : https://github.com/WangRongsheng/Xra…...
Hive 常见数据倾斜场景及解决方案(Map\Join\Reduce端)
目录 MapReduce流程简述a) Map倾斜b) Join倾斜c) Reduce倾斜 首先回顾一下MapReduce的流程 MapReduce流程简述 输入分片: MapReduce 作业开始时,输入数据被分割成多个分片,每个分片大小一般在 16MB 到 128MB 之间。这些分片会被分配给不同的…...
C++中的四种强制类型转换符详解
前 言 C 既支持 C 风格的类型转换,又有自己风格的类型转换。C 风格的转换格式很简单,但是有不少缺点: 转换太过随意,可以在任意类型之间转换。你可以把一个指向 const 对象的指针转换成指向非 const 对象的指针,把一…...
Windows电脑多开器的优缺点对比
Windows电脑多开器是一种能够让用户同时运行多个应用程序、游戏或者网页的软件工具。它的作用在于让用户能够更加高效地工作、学习或者娱乐。但是,这种软件也存在一些优劣势的对比。 优点: 提升工作效率。多开器可以让用户同时打开多个应用程序或者网页…...
Java笔记六(面向对象:类与对象)
面向对象编程的本质:以类的方式组织代码,以对象的组织(封装)数据 抽象 三大特征:封装 继承 多态 从认识角度考虑是先有对象后有类。对象,是具体的事物。类,是抽象的,是对对象的抽…...
Git使用【中】
欢迎来到Cefler的博客😁 🕌博客主页:那个传说中的man的主页 🏠个人专栏:题目解析 🌎推荐文章:题目大解析3 目录 👉🏻分支管理分支概念git branch(查看/删除分…...
Greenplum7一键安装
2023年9月底,Greenplum 发布了7.0.0版本,并于2023年10月03日开放了安装部署说明文档,现在快速尝鲜版的docker一键部署方式如下: mkdir /data/gpdb docker run -d --name greenplum -p 15432:5432 -v /data/gpdb:/data inrgihc/g…...
Springboo整合Sentinel
Springboo整合Sentinel 1.启动Sentinel java -jar sentinel-dashboard-1.8.6.jar2.访问localhost:8080到Sentinel管理界面(默认账号和密码都是sentinel) 3.引入依赖(注意版本对应) <dependency><groupId>com.alibaba.cloud</groupId><artifactId>spr…...
python爬取csdn个人首页中的所有封面
#爬取csdn个人首页中的所有封面 import requests import json import reurlhttps://blog.csdn.net/community/home-api/v1/get-business-list? headers{User-Agent:Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safar…...
EasyHttp - 网络请求,如斯优雅
官网 项目地址:Github博客地址:网络请求,如斯优雅 OkHttp 另外对 OkHttp 原理感兴趣的同学推荐你看以下源码分析文章 OkHttp 精讲:拦截器执行原理OkHttp 精讲:RetryAndFollowUpInterceptorOkHttp 精讲:…...
【Java】Stream的基本使用
Stream特点 Stream的一系列操作组成了Stream的流水线, Stream流水线包含: 数据源: 这里的数据源可能是集合/数组, 可能是生成器, 甚至可能是IO通道(Files.lines)零个或多个中间操作: 中间操作会导致流之间的转化, 如filter(Predicate)一个终端操作: 终端操作会产生最终所需要的…...
idea Springboot 高校科研资源共享系统VS开发mysql数据库web结构java编程计算机网页源码maven项目
一、源码特点 springboot 高校科研资源共享系统是一套完善的信息系统,结合springboot框架和bootstrap完成本系统,对理解JSP java编程开发语言有帮助系统采用springboot框架(MVC模式开发), 系统具有完整的源代码和数据…...
机器学习算法基础--K-means应用实战--图像分割
目录 1.项目内容介绍 2.项目关键代码 3.项目效果展示 1.项目内容介绍 本项目是将一张图片进行k-means分类,根据色彩k进行分类,最后比较和原图的效果。 题目还是比较简单的,我们只要通过k-means聚类,一类就是一种色彩得出聚类之…...
CSS学习小结
css的两种使用方式: ①内嵌样式表 ②导入外部样式表(实际开发常用)<link href"...." rel"stylesheet"/> 选择器: ①标签选择器:通过标签种类决定 ②类选择器:class"..…...
数据挖掘实验(一)数据规范化【最小-最大规范化、零-均值规范化、小数定标规范化】
一、数据规范化的原理 数据规范化处理是数据挖掘的一项基础工作。不同的属性变量往往具有不同的取值范围,数值间的差别可能很大,不进行处理可能会影响到数据分析的结果。为了消除指标之间由于取值范围带来的差异,需要进行标准化处理。将数据…...
C++17中std::filesystem::directory_entry的使用
C17引入了std::filesystem库(文件系统库, filesystem library)。这里整理下std::filesystem::directory_entry的使用。 std::filesystem::directory_entry,目录项,获取文件属性。此directory_entry类主要用法包括: (1).构造函数、…...
C/C++跨平台构建工具CMake入门
文章目录 1.概述2.环境准备2.1 安装编译工具2.2 安装CMake 3.编译一个示例程序总结 1.概述 本人一直对OpenGL的3d渲染很感兴趣,但是苦于自己一直是Android开发,没有机会接触这方面的知识。就在最近吗,机会来了,以前一个做3D渲染的…...
【CFD小工坊】浅水方程的离散及求解方法
【CFD小工坊】浅水方程的离散及求解方法 前言基于有限体积法的方程离散界面通量与源项计算干-湿网格的处理数值离散的稳定性条件参考文献 前言 我们模型的控制方程,即浅水方程组的表达式如下: ∂ U ∂ t ∂ E ( U ) ∂ x ∂ G ( U ) ∂ y S ( U ) U…...
第十四章 类和对象——C++对象模型和this指针
一、成员变量和成员函数分开存储 在C中,类内的成员变量和成员函数分开存储 只有非静态成员变量才属于类的对象上 class Person {public:Person() {mA 0;}//非静态成员变量占对象空间int mA;//静态成员变量不占对象空间static int mB; //函数也不占对象空间&#…...
计算机竞赛 深度学习卫星遥感图像检测与识别 -opencv python 目标检测
文章目录 0 前言1 课题背景2 实现效果3 Yolov5算法4 数据处理和训练5 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 **深度学习卫星遥感图像检测与识别 ** 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐…...
linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...
visual studio 2022更改主题为深色
visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中,选择 环境 -> 常规 ,将其中的颜色主题改成深色 点击确定,更改完成...
镜像里切换为普通用户
如果你登录远程虚拟机默认就是 root 用户,但你不希望用 root 权限运行 ns-3(这是对的,ns3 工具会拒绝 root),你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案:创建非 roo…...
css的定位(position)详解:相对定位 绝对定位 固定定位
在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...
是否存在路径(FIFOBB算法)
题目描述 一个具有 n 个顶点e条边的无向图,该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序,确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数,分别表示n 和 e 的值(1…...
代理篇12|深入理解 Vite中的Proxy接口代理配置
在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...
2023赣州旅游投资集团
单选题 1.“不登高山,不知天之高也;不临深溪,不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...
【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...
深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用
文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么?1.1.2 感知机的工作原理 1.2 感知机的简单应用:基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...
0x-3-Oracle 23 ai-sqlcl 25.1 集成安装-配置和优化
是不是受够了安装了oracle database之后sqlplus的简陋,无法删除无法上下翻页的苦恼。 可以安装readline和rlwrap插件的话,配置.bahs_profile后也能解决上下翻页这些,但是很多生产环境无法安装rpm包。 oracle提供了sqlcl免费许可,…...
