当前位置: 首页 > news >正文

数据挖掘实验(一)数据规范化【最小-最大规范化、零-均值规范化、小数定标规范化】

一、数据规范化的原理

数据规范化处理是数据挖掘的一项基础工作。不同的属性变量往往具有不同的取值范围,数值间的差别可能很大,不进行处理可能会影响到数据分析的结果。为了消除指标之间由于取值范围带来的差异,需要进行标准化处理。将数据按照比例进行缩放,使之落入一个特定的区域,便于进行综合分析。

1.1.最小-最大规范化

clear;clc;
A = [78 521 602 2863144 -600 -521 224595 -457 468 -128369 596 695 1054190 527 691 2051101 403 470 2487146 413 435 2571];new = input("请输入需要映射到的新区间。输入格式示例:[0,1]\n");
new_mi = new(1);
new_mx = new(2);
% 计算每列的最小值和最大值
min_vals = min(A);
max_vals = max(A);% 对每个元素进行最小-最大规范化
normalized_A = (A - min_vals) ./ (max_vals - min_vals)* (new_mx - new_mi) + new_mi;;disp(normalized_A);

MATLAB支持广播机制的,在进行矩阵运算时,可以自动扩展维度较小的矩阵,使其与维度较大的矩阵相匹配,从而实现逐元素的运算。

在MATLAB中,要实现广播机制,需要满足以下条件:

  • 运算的两个矩阵相应维度的大小要么相同,要么其中一个为1。
  • 运算符必须是逐元素的运算符,如.*、./、.\、.^等,不能是矩阵乘法*或矩阵除法/。
  • 如果运算的两个矩阵都是列向量或者行向量,那么它们可以直接进行逐元素运算,无需扩展维度。

disp函数是MATLAB中用于在命令行窗口中显示输出的函数。它可以显示各种类型的数据,包括数字、字符串、矩阵等。 

A = [78 521 602 2863144 -600 -521 224595 -457 468 -128369 596 695 1054190 527 691 2051101 403 470 2487146 413 435 2571];
new = input("请输入需要映射到的新区间。输入格式示例:[0,1]\n");
new_mi = new(1);
new_mx = new(2);
B = mapminmax(A',new_mi ,new_mx)';
fprintf("\n经过最小最大规范化后:\n"); 
disp(B)

Matlab有一个现成的函数可以实现最小-最大规范化,它就是 mapminmax() 函数

[Y,PS] = mapminmax(X,YMIN,YMAX)

其中X是要规范化的矩阵或向量,YMIN和YMAX是指定的区间端点(默认为-1和1),Y是规范化后的矩阵或向量,PS是一个结构体,包含了规范化所用的参数,如最小值、最大值、缩放因子等。如果要对另一个矩阵或向量应用相同的规范化参数,可以使用 mapminmax(‘apply’,X,PS) 函数。

代码运行结果

输入的新区间范围为[0,1]:

原数据:
A =78         521         602        2863144        -600        -521        224595        -457         468       -128369         596         695        1054190         527         691        2051101         403         470        2487146         413         435        2571请输入需要映射到的新区间。输入格式示例:[0,1]
[0,1]经过最小最大规范化后:
B =0.0744    0.9373    0.9235    1.00000.6198         0         0    0.85090.2149    0.1196    0.8133         00    1.0000    1.0000    0.56371.0000    0.9423    0.9967    0.80410.2645    0.8386    0.8150    0.90930.6364    0.8470    0.7862    0.9296

 1.2零-均值规范化

clear;clc;%% 数据存入A
A=[78 521 602 2863	
144 -600 -521 2245	
95 -457 468 -1283
69 596 695 1054
190 527 691 2051
101 403 470 2487
146 413 435 2571];A_mean=mean(A); % mean求的是每列的均值
A_std=std(A); % std求的是每列的标准差
[n,m]=size(A);
B=(A-A_mean)./A_std;fprintf("原数据:"); 
disp(A);
fprintf("经过零均值规范化后:"); 
disp(B);
代码运行结果
原数据:
A =78         521         602        2863144        -600        -521        224595        -457         468       -128369         596         695        1054190         527         691        2051101         403         470        2487146         413         435        2571经过零均值规范化后:
B =-0.9054    0.6359    0.4645    0.79810.6047   -1.5877   -2.1932    0.3694-0.5164   -1.3040    0.1474   -2.0783-1.1113    0.7846    0.6846   -0.45691.6571    0.6478    0.6752    0.2348-0.3791    0.4018    0.1521    0.53730.6504    0.4216    0.0693    0.5956
clear;clc;%% 数据存入A
A=[78 521 602 2863	
144 -600 -521 2245	
95 -457 468 -1283
69 596 695 1054
190 527 691 2051
101 403 470 2487
146 413 435 2571];B = zscore (A); % 沿每列计算标准差fprintf("原数据:"); 
disp(A);
fprintf("经过零均值规范化后:"); 
disp(B);

Matlab有一个现成的函数可以实现零-均值规范化,它就是 zscore() 函数1。这个函数可以计算一个数组或向量中元素的标准差,并返回每个元素的 z 分数,即对数据进行中心化和缩放处理,使其均值为 0,标准差为 1。

Z = zscore (X) % 计算X沿第一个非单一维度的标准差
Z = zscore (X,flag) % 指定标准差的类型
Z = zscore (X,flag,'all') % 使用X中所有值的均值和标准差
Z = zscore (X,flag,dim) % 指定沿哪个维度计算
Z = zscore (X,flag,vecdim) % 指定沿多个维度计算
[Z,mu,sigma] = zscore ( ___) % 还返回均值和标准差

 1.3小数定标规范化

clear;clc;%% 数据存入A
A = [78 521 602 2863144 -600 -521 224595 -457 468 -128369 596 695 1054190 527 691 2051101 403 470 2487146 413 435 2571];mx = max(abs(A)); % 求每列绝对值最大的数mx
len = floor(log10(mx))+1; % 求mx的位数len
B = A ./ (10.^len); % 将A中每个元素除以10^lenfprintf("原数据:\n"); 
disp(A);
fprintf("经过小数定标规范化:\n"); 
disp(B);
代码运行结果
原数据:
A =78         521         602        2863144        -600        -521        224595        -457         468       -128369         596         695        1054190         527         691        2051101         403         470        2487146         413         435        2571经过小数定标规范化后:
B =0.0780    0.5210    0.6020    0.28630.1440   -0.6000   -0.5210    0.22450.0950   -0.4570    0.4680   -0.12830.0690    0.5960    0.6950    0.10540.1900    0.5270    0.6910    0.20510.1010    0.4030    0.4700    0.24870.1460    0.4130    0.4350    0.2571

相关文章:

数据挖掘实验(一)数据规范化【最小-最大规范化、零-均值规范化、小数定标规范化】

一、数据规范化的原理 数据规范化处理是数据挖掘的一项基础工作。不同的属性变量往往具有不同的取值范围,数值间的差别可能很大,不进行处理可能会影响到数据分析的结果。为了消除指标之间由于取值范围带来的差异,需要进行标准化处理。将数据…...

C++17中std::filesystem::directory_entry的使用

C17引入了std::filesystem库(文件系统库, filesystem library)。这里整理下std::filesystem::directory_entry的使用。 std::filesystem::directory_entry,目录项,获取文件属性。此directory_entry类主要用法包括: (1).构造函数、…...

C/C++跨平台构建工具CMake入门

文章目录 1.概述2.环境准备2.1 安装编译工具2.2 安装CMake 3.编译一个示例程序总结 1.概述 本人一直对OpenGL的3d渲染很感兴趣,但是苦于自己一直是Android开发,没有机会接触这方面的知识。就在最近吗,机会来了,以前一个做3D渲染的…...

【CFD小工坊】浅水方程的离散及求解方法

【CFD小工坊】浅水方程的离散及求解方法 前言基于有限体积法的方程离散界面通量与源项计算干-湿网格的处理数值离散的稳定性条件参考文献 前言 我们模型的控制方程,即浅水方程组的表达式如下: ∂ U ∂ t ∂ E ( U ) ∂ x ∂ G ( U ) ∂ y S ( U ) U…...

第十四章 类和对象——C++对象模型和this指针

一、成员变量和成员函数分开存储 在C中,类内的成员变量和成员函数分开存储 只有非静态成员变量才属于类的对象上 class Person {public:Person() {mA 0;}//非静态成员变量占对象空间int mA;//静态成员变量不占对象空间static int mB; //函数也不占对象空间&#…...

计算机竞赛 深度学习卫星遥感图像检测与识别 -opencv python 目标检测

文章目录 0 前言1 课题背景2 实现效果3 Yolov5算法4 数据处理和训练5 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 **深度学习卫星遥感图像检测与识别 ** 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐…...

java web+Mysql e-life智能生活小区物业管理系统

本项目为本人自己书写,主要服务小区业主和管理人员。 e-life智能生活小区涉及多个方面的智能化和便利化服务: 1. 用户模块:包含基本的登入登出操作,查看个人信息中用户可以查看 自己的个人资料但不可以修改个人信息。 a) 用户…...

AttributeError: module ‘dgl‘ has no attribute ‘batch_hetero‘

DGLWarning: From v0.5, DGLHeteroGraph is merged into DGLGraph. You can safely replace dgl.batch_hetero with dgl.batch...

Vue项目搭建图文详解教程

版权声明 本文原创作者:谷哥的小弟作者博客地址:http://blog.csdn.net/lfdfhl 预备工作 请在本地创建文件夹用于存放Vue项目,例如:创建HelloWorld文件夹存放即将创建的Vue新项目。 创建Vue项目 首先,请在DOS中将目录…...

SpringMVC处理请求核心流程

一、前言 SpringMVC是一个基于Java的Web框架,它使用MVC(Model-View-Controller)设计模式来处理Web请求。在SpringMVC中,请求处理的核心流程主要包括以下几个步骤: 1、用户发送请求到前端控制器(Dispatche…...

SoloX:Android和iOS性能数据的实时采集工具

SoloX:Android和iOS性能数据的实时采集工具 github地址:https://github.com/smart-test-ti/SoloX 最新版本:V2.7.6 一、SoloX简介 SoloX是开源的Android/iOS性能数据的实时采集工具,目前主要功能特点: 无需ROOT/越狱…...

【知识点随笔分析 | 第五篇】简单介绍什么是QUIC

前言: 随着互联网的快速发展,传统的基于TCP的协议开始显现出一些局限性。TCP在连接建立和拥塞控制方面存在一定的延迟,这可能导致用户在访问网页、观看视频或玩网络游戏时感受到不必要的等待时间。而QUIC作为一种新兴的传输协议,试…...

vscode ssh 远程免密登录开发

存放代码的机器运行 sshd, vscode 所在机器保证可以通过 ssh 登录服务器vscode 机器通过 ssh-keygen 生成 ssh 公私钥对(已有可以忽略)将客户端的 id_rsa.pub 加入到服务器的鉴权队列 cat id_rsa.pub >> authorized_keysvscode 配置ssh登录即可.ctrlp, remote-ssh: open …...

辅助驾驶功能开发-测试篇(2)-真值系统介绍

1 真值系统概述 1.1 真值评测系统核心应用 快速构建有效感知真值,快速完成感知性能评估,快速分析感知性能缺陷。 主要应用场景包括: 1. 感知算法开发验证: 在算法开发周期中,评测结果可以作为测试报告的一部分,体现算法性能的提升。 2. 遴选供应…...

运行程序时msvcr110.dll丢失的解决方法,msvcr110.dll丢失5的个详细解决方法

在使用电脑的过程中,我们经常会遇到各种问题,其中之一就是 msvcr110.dll 丢失的问题。msvcr110.dll 是 Microsoft Visual C Redistributable 的一个组件,用于支持使用 Visual C 编写的应用程序。如果您的系统中丢失了这个文件,您可…...

已解决 Bug——IndexError: index 3 is out of bounds for axis 0 with size 3问题

🌷🍁 博主猫头虎(🐅🐾)带您 Go to New World✨🍁 🦄 博客首页: 🐅🐾猫头虎的博客🎐《面试题大全专栏》 🦕 文章图文并茂&#x1f996…...

WEB3 solidity 带着大家编写测试代码 操作订单 创建/取消/填充操作

好 在我们的不懈努力之下 交易所中的三种订单函数已经写出来了 但是 我们只是编译 确认了 代码没什么问题 但还没有实际的测试过 这个测试做起来 其实就比较的麻烦了 首先要有两个账号 且他们都要在交易所中有存入 我们还是先将 ganache 的虚拟环境启动起来 然后 我们在项目…...

c++-vector

文章目录 前言一、vector介绍二、vector使用1、构造函数2、vector 元素访问3、vector iterator 的使用4、vector 空间增长问题5、vector 增删查改6、理解vector<vector< int >>7、电话号码的字母组合练习题 三、模拟实现vector1、查看STL库源码中怎样实现的vector2…...

十四天学会C++之第二天(函数和库)

1. 函数的定义和调用 在C中&#xff0c;函数是组织和结构化代码的关键工具之一。它们允许您将一段代码封装成一个可重复使用的模块&#xff0c;这有助于提高代码的可读性和维护性。 为什么使用函数&#xff1f; 函数在编程中的作用不可小觑。它们有以下几个重要用途&#xf…...

蓝桥杯每日一题2023.10.3

杨辉三角形 - 蓝桥云课 (lanqiao.cn) 题目描述 题目分析 40分写法&#xff1a; 可以自己手动构造一个杨辉三角&#xff0c;然后进行循环&#xff0c;用cnt记录下循环数的个数&#xff0c;看哪个数与要找的数一样&#xff0c;输出cnt #include<bits/stdc.h> using na…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向&#xff1a; 逆向设计 通过神经网络快速预测微纳结构的光学响应&#xff0c;替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能&#xff0c;本节首先介绍如何通过 Docker 快速体验 TDengine&#xff0c;然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker&#xff0c;请使用 安装包的方式快…...

MySQL 8.0 OCP 英文题库解析(十三)

Oracle 为庆祝 MySQL 30 周年&#xff0c;截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始&#xff0c;将英文题库免费公布出来&#xff0c;并进行解析&#xff0c;帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战

“&#x1f916;手搓TuyaAI语音指令 &#x1f60d;秒变表情包大师&#xff0c;让萌系Otto机器人&#x1f525;玩出智能新花样&#xff01;开整&#xff01;” &#x1f916; Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制&#xff08;TuyaAI…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码&#xff1a; https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...

Pinocchio 库详解及其在足式机器人上的应用

Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库&#xff0c;专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性&#xff0c;并提供了一个通用的框架&…...

[USACO23FEB] Bakery S

题目描述 Bessie 开了一家面包店! 在她的面包店里&#xff0c;Bessie 有一个烤箱&#xff0c;可以在 t C t_C tC​ 的时间内生产一块饼干或在 t M t_M tM​ 单位时间内生产一块松糕。 ( 1 ≤ t C , t M ≤ 10 9 ) (1 \le t_C,t_M \le 10^9) (1≤tC​,tM​≤109)。由于空间…...

海云安高敏捷信创白盒SCAP入选《中国网络安全细分领域产品名录》

近日&#xff0c;嘶吼安全产业研究院发布《中国网络安全细分领域产品名录》&#xff0c;海云安高敏捷信创白盒&#xff08;SCAP&#xff09;成功入选软件供应链安全领域产品名录。 在数字化转型加速的今天&#xff0c;网络安全已成为企业生存与发展的核心基石&#xff0c;为了解…...

ArcGIS Pro+ArcGIS给你的地图加上北回归线!

今天来看ArcGIS Pro和ArcGIS中如何给制作的中国地图或者其他大范围地图加上北回归线。 我们将在ArcGIS Pro和ArcGIS中一同介绍。 1 ArcGIS Pro中设置北回归线 1、在ArcGIS Pro中初步设置好经纬格网等&#xff0c;设置经线、纬线都以10间隔显示。 2、需要插入背会归线&#xf…...

PydanticAI快速入门示例

参考链接&#xff1a;https://ai.pydantic.dev/#why-use-pydanticai 示例代码 from pydantic_ai import Agent from pydantic_ai.models.openai import OpenAIModel from pydantic_ai.providers.openai import OpenAIProvider# 配置使用阿里云通义千问模型 model OpenAIMode…...