深度学习笔记_4、CNN卷积神经网络+全连接神经网络解决MNIST数据
1、首先,导入所需的库和模块,包括NumPy、PyTorch、MNIST数据集、数据处理工具、模型层、优化器、损失函数、混淆矩阵、绘图工具以及数据处理工具。
import numpy as np
import torch
from torchvision.datasets import mnist
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
from torch import nn
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sns
import csv
import pandas as pd
2、设置超参数,包括训练批次大小、测试批次大小、学习率和训练周期数。
# 设置超参数
train_batch_size = 64
test_batch_size = 64
learning_rate = 0.001
num_epochs = 10
3、创建数据转换管道,将图像数据转换为张量并进行标准化。
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize([0.5], [0.5])
])
4、下载和预处理MNIST数据集,分为训练集和测试集。
# 下载和预处理数据集
train_dataset = mnist.MNIST('data', train=True, transform=transform, download=True)
test_dataset = mnist.MNIST('data', train=False, transform=transform)
5、创建用于训练和测试的数据加载器,以便有效地加载数据。
# 创建数据加载器
train_loader = DataLoader(train_dataset, batch_size=train_batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=test_batch_size, shuffle=False)
6、定义了一个简单的CNN模型,包括两个卷积层和两个全连接层。
# 定义CNN模型
class CNN(nn.Module):def __init__(self):super(CNN, self).__init__()self.conv1 = nn.Conv2d(1, 32, kernel_size=5)self.conv2 = nn.Conv2d(32, 64, kernel_size=5)self.fc1 = nn.Linear(1024, 256)self.fc2 = nn.Linear(256, 10)def forward(self, x):x = F.relu(F.max_pool2d(self.conv1(x), 2))x = F.relu(F.max_pool2d(self.conv2(x), 2))x = x.view(x.size(0), -1)x = F.relu(self.fc1(x))x = self.fc2(x)return F.log_softmax(x, dim=1)
7、初始化模型、优化器和损失函数。
# 初始化模型、优化器和损失函数
model = CNN()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
criterion = nn.CrossEntropyLoss()
8、准备用于记录训练和测试过程中损失和准确率的列表。
# 记录训练和测试过程中的损失和准确率
train_losses = []
test_losses = []
train_accuracies = []
test_accuracies = []
9、进入训练循环,遍历每个训练周期。在每个训练周期内,进入训练模式,遍历训练数据批次,计算损失、反向传播并更新模型参数,同时记录训练损失和准确率。
for epoch in range(num_epochs):model.train()train_loss = 0.0correct = 0total = 0for batch_idx, (data, target) in enumerate(train_loader):optimizer.zero_grad()output = model(data)loss = criterion(output, target)loss.backward()optimizer.step()train_loss += loss.item()# 计算训练准确率_, predicted = output.max(1)total += target.size(0)correct += predicted.eq(target).sum().item()# 计算平均训练损失和训练准确率train_loss /= len(train_loader)train_accuracy = 100. * correct / totaltrain_losses.append(train_loss)train_accuracies.append(train_accuracy) # 记录训练准确率# 测试模型model.eval()test_loss = 0.0correct = 0all_labels = []all_preds = []with torch.no_grad():for data, target in test_loader:output = model(data)test_loss += criterion(output, target).item()pred = output.argmax(dim=1, keepdim=True)correct += pred.eq(target.view_as(pred)).sum().item()all_labels.extend(target.numpy())all_preds.extend(pred.numpy())
10、在每个训练周期结束后,进入测试模式,遍历测试数据批次,计算测试损失和准确率,同时记录它们。打印每个周期的训练和测试损失以及准确率。
# 计算平均测试损失和测试准确率test_loss /= len(test_loader)test_accuracy = 100. * correct / len(test_loader.dataset)test_losses.append(test_loss)test_accuracies.append(test_accuracy)print(f'Epoch [{epoch + 1}/{num_epochs}] -> Train Loss: {train_loss:.4f}, Train Accuracy: {train_accuracy:.2f}%, Test Loss: {test_loss:.4f}, Test Accuracy: {test_accuracy:.2f}%')
11、losses、acces、eval_losses、eval_acces保存到TXT文件
# 保存训练结果
data = np.column_stack((train_losses,test_losses,train_accuracies, test_accuracies))
np.savetxt("results.txt", data)
12、绘制Loss、ACC图像
# 绘制Loss曲线图
plt.figure(figsize=(10, 2))
plt.plot(train_losses, label='Train Loss', color='blue')
plt.plot(test_losses, label='Test Loss', color='red')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.title('Loss Curve')
plt.grid(True)
plt.savefig('loss_curve.png')
plt.show()# 绘制Accuracy曲线图
plt.figure(figsize=(10, 2))
plt.plot(train_accuracies, label='Train Accuracy', color='red') # 绘制训练准确率曲线
plt.plot(test_accuracies, label='Test Accuracy', color='green')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
plt.title('Accuracy Curve')
plt.grid(True)
plt.savefig('accuracy_curve.png')
plt.show()
13、绘制混淆矩阵图像
# 计算混淆矩阵
confusion_mat = confusion_matrix(all_labels, all_preds)
plt.figure(figsize=(10, 8))
sns.heatmap(confusion_mat, annot=True, fmt='d', cmap='Blues', cbar=False)
plt.xlabel('Predicted Labels')
plt.ylabel('True Labels')
plt.title('Confusion Matrix')
plt.savefig('confusion_matrix.png')
plt.show()
相关文章:

深度学习笔记_4、CNN卷积神经网络+全连接神经网络解决MNIST数据
1、首先,导入所需的库和模块,包括NumPy、PyTorch、MNIST数据集、数据处理工具、模型层、优化器、损失函数、混淆矩阵、绘图工具以及数据处理工具。 import numpy as np import torch from torchvision.datasets import mnist import torchvision.transf…...

高效的开发流程搭建
目录 1. 搭建 AI codebase 环境kaggle的服务器1. 搭建 AI codebase 环境 python 、torch 以及 cuda版本,对AI的影响最大。不同的版本,可能最终计算出的结果会有区别。 硬盘:PCIE转SSD的卡槽,, GPU: 软件源: Anaconda: 一定要放到固态硬盘上。 VS code 的 debug功能…...

浅谈OV SSL 证书的优势
随着网络威胁日益增多,保护网站和用户安全已成为每个企业和组织的重要任务。在众多SSL证书类型中,OV(Organization Validation)证书以其独特的优势备受关注。让我们深入探究OV证书的优势所在,为网站安全搭建坚实的防线…...

一篇博客学会系列(3) —— 对动态内存管理的深度讲解以及经典笔试题的深度解析
目录 动态内存管理 1、为什么存在动态内存管理 2、动态内存函数的介绍 2.1、malloc和free 2.2、calloc 2.3、realloc 3、常见的动态内存错误 3.1、对NULL指针的解引用操作 3.2、对动态开辟空间的越界访问 3.3、对非动态开辟内存使用free释放 3.4、使用free释放一块动态…...
【C++ techniques】虚化构造函数、虚化非成员函数
constructor的虚化 virtual function:完成“因类型而异”的行为;constructor:明确类型时构造函数;virtual constructor:视其获得的输入,可产生不同的类型对象。 //假如写一个软件,用来处理时事…...
蓝牙核心规范(V5.4)11.6-LE Audio 笔记之初识音频位置和通道分配
专栏汇总网址:蓝牙篇之蓝牙核心规范学习笔记(V5.4)汇总_蓝牙核心规范中文版_心跳包的博客-CSDN博客 爬虫网站无德,任何非CSDN看到的这篇文章都是盗版网站,你也看不全。认准原始网址。!!! 音频位置 在以前的每个蓝牙音频规范中,只有一个蓝牙LE音频源和一个蓝牙LE音频接…...

mysql双主+双从集群连接模式
架构图: 详细内容参考: 结果展示: 178.119.30.14(主) 178.119.30.15(主) 178.119.30.16(从) 178.119.30.17(从)...

嵌入式中如何用C语言操作sqlite3(07)
sqlite3编程接口非常多,对于初学者来说,我们暂时只需要掌握常用的几个函数,其他函数自然就知道如何使用了。 数据库 本篇假设数据库为my.db,有数据表student。 nonamescore4嵌入式开发爱好者89.0 创建表格语句如下: CREATE T…...
RandomForestClassifier 与 GradientBoostingClassifier 的区别
RandomForestClassifier(随机森林分类器)和GradientBoostingClassifier(梯度提升分类器)是两种常用的集成学习方法,它们之间的区别分以下几点。 1、基础算法 RandomForestClassifier:随机森林分类器是基于…...

计组——I/O方式
一、程序查询方式 CPU不断轮询检查I/O控制器中“状态寄存器”,检测到状态为“已完成”之后,再从数据寄存器取出输入数据。 过程: 1.CPU执行初始化程序,并预置传送参数;设置计数器、设置数据首地址。 2. 向I/O接口发…...

jsbridge实战2:Swift和h5的jsbridge通信
[[toc]] demo1: 文本通信 h5 -> app 思路: h5 全局属性上挂一个变量app 接收这个变量的内容关键API: navigation代理 navigationAction.request.url?.absoluteString // 这个变量挂载在 request 的 url 上 ,在浏览器实际无法运行,因…...

集合原理简记
HashMap 无论在构造函数是否指定数组长度,进行的都是延迟初始化 构造函数作用: 阈值:threshold,每次<<1 ,数组长度 负载因子 无参构造:设置默认的负载因子 有参:可以指定初始容量或…...
机器学习的超参数 、训练集、归纳偏好
一、介绍 超参数(Hyperparameters)和验证集(Validation Set)是机器学习中重要的概念,用于调整模型和评估其性能。 超参数: 超参数是在机器学习模型训练过程中需要手动设置的参数,而不是从数据…...

Leetcode1071. 字符串的最大公因子(三种方法,带详细解析)
Leetcode1071. 字符串的最大公因子 对于字符串 s 和 t,只有在 s t … t(t 自身连接 1 次或多次)时,我们才认定 “t 能除尽 s”。 给定两个字符串 str1 和 str2 。返回 最长字符串 x,要求满足 x 能除尽 str1 且 x 能…...

如何像人类一样写HTML之图像标签,超链接标签与多媒体标签
文章目录 前言一、图像标签1.1 什么是图像标签?2.2 如何使用图像标签? 二、超链接标签2.1 什么是超链接标签?2.2 如何使用超链接标签? 三、多媒体标签3.1 什么是多媒体标签?3.2 如何使用多媒体audio标签?3.…...

1300*C. Rumor(并查集贪心)
解析: 并查集,求每个集合的最小费用。 每次合并集合的时候,根节点保存当前集合最小的费用。 #include<bits/stdc.h> using namespace std; #define int long long const int N1e55; int n,m,a[N],p[N],cnt[N]; int find(int x){retur…...
python实用小代码(数据分析向)
一、python实现31省市名称替换 首先定义了一个字典province_dict,其中包含每个省市的无缩写名称与其标准名称之间的映射。然后,我们使用map()函数将每个省市名称从无缩写名称转换为标准名称,并将结果存储在新列省市标准名称中。 province_di…...
【oncmdmsg 鼠标】2023/8/19 上午9:50:14
2023/8/19 上午9:50:14 oncmdmsg 鼠标 2023/8/19 上午9:50:22 抱歉,您提到的 “oncmdmsg” 和 “鼠标” 是什么?请提供更多上下文信息,我将尽力帮助您。 2023/8/19 上午9:51:43 OnCmdMsg 2023/8/19 上午9:52:21 “OnCmdMsg” 是一个在 MFC (Microsoft Foundation Cla…...

插入排序:简单而有效的排序方法
在计算机科学中,排序算法是一个重要且常见的主题,它们用于对数据进行有序排列。插入排序(Insertion Sort)是其中一个简单但有效的排序算法。本文将详细解释插入排序的原理和步骤,并提供Java语言的实现示例。 插入排序的…...

OpenGL之光照贴图
我们需要拓展之前的系统,引入漫反射和镜面光贴图(Map)。这允许我们对物体的漫反射分量和镜面光分量有着更精确的控制。 漫反射贴图 我们希望通过某种方式对物体的每个片段单独设置漫反射颜色。我们仅仅是对同样的原理使用了不同的名字:其实都是使用一张覆盖物体的图像,让我…...

23-Oracle 23 ai 区块链表(Blockchain Table)
小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...
pam_env.so模块配置解析
在PAM(Pluggable Authentication Modules)配置中, /etc/pam.d/su 文件相关配置含义如下: 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块,负责验证用户身份&am…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)
骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术,它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton):由层级结构的骨头组成,类似于人体骨骼蒙皮 (Mesh Skinning):将模型网格顶点绑定到骨骼上,使骨骼移动…...

Mysql中select查询语句的执行过程
目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析(Parser) 2.4、执行sql 1. 预处理(Preprocessor) 2. 查询优化器(Optimizer) 3. 执行器…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战
说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下,风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)
考察一般的三次多项式,以r为参数: p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]; 此多项式的根为: 尽管看起来这个多项式是特殊的,其实一般的三次多项式都是可以通过线性变换化为这个形式…...

逻辑回归暴力训练预测金融欺诈
简述 「使用逻辑回归暴力预测金融欺诈,并不断增加特征维度持续测试」的做法,体现了一种逐步建模与迭代验证的实验思路,在金融欺诈检测中非常有价值,本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...

Qemu arm操作系统开发环境
使用qemu虚拟arm硬件比较合适。 步骤如下: 安装qemu apt install qemu-system安装aarch64-none-elf-gcc 需要手动下载,下载地址:https://developer.arm.com/-/media/Files/downloads/gnu/13.2.rel1/binrel/arm-gnu-toolchain-13.2.rel1-x…...

实战三:开发网页端界面完成黑白视频转为彩色视频
一、需求描述 设计一个简单的视频上色应用,用户可以通过网页界面上传黑白视频,系统会自动将其转换为彩色视频。整个过程对用户来说非常简单直观,不需要了解技术细节。 效果图 二、实现思路 总体思路: 用户通过Gradio界面上…...