【C++】运算符重载 ⑥ ( 一元运算符重载 | 后置运算符重载 | 前置运算符重载 与 后置运算符重载 的区别 | 后置运算符重载添加 int 占位参数 )
文章目录
- 一、后置运算符重载
- 1、前置运算符重载 与 后置运算符重载 的区别
- 2、后置运算符重载添加 int 占位参数
上 2 2 2 篇博客
- 【C++】运算符重载 ④ ( 一元运算符重载 | 使用 全局函数 实现 前置 ++ 自增运算符重载 | 使用 全局函数 实现 前置 - - 自减运算符重载 )
- 【C++】运算符重载 ⑤ ( 一元运算符重载 | 使用 成员函数 实现 前置 ++ 自增运算符重载 | 使用 成员函数 实现 前置 - - 自减运算符重载 )
讲解了 前置运算符 的 重载 , 前置运算符就是 ++Object 或 --Object , 一元运算符 在 对象的 前面 ;
本篇博客开始讲解 后置运算符 的重载 ;
一、后置运算符重载
1、前置运算符重载 与 后置运算符重载 的区别
后置运算符 是 Object++ 或 Object-- , 一元运算符在对象的后面 ;
前置运算符重载 与 后置运算符重载 的区别是 返回值类型 不同 ,
- 前置运算符重载 , 返回值是 对象引用 ;
// 使用 全局函数 实现 前置 ++ 自增运算符重载
// 重载 前置 ++ 运算符
// 实现 1 个 Student 对象 自增运算
// 由于 参数中的 Student& s 中的属性发生了变化
// 返回时仍需要返回 Student& s 参数本身
Student& operator++(Student& s)
{s.age++;s.height++;return s;
};
- 后置运算符重载 , 返回值是 匿名对象 ;
// 使用 全局函数 实现 后置 ++ 自增运算符重载
// 重载 后置 ++ 运算符
// 实现 1 个 Student 对象 自增运算
// 先使用 参数中的 Student& s 对象 , 再自增
// 因此 Student& s 对象是需要自增的
// 但是使用的对象 就是 返回的对象, 必须是没有自增的对象
// 这里使用 ret 保存 s 对象值 , 然后返回该 ret 值
// s 对象中的值自增
// 返回的是一个新 Student 对象
Student operator++(Student& s)
{Student ret = s;s.age++;s.height++;return ret;
};
由于 重载函数 只看 函数名 和 参数列表 , 不看返回值 , 因此
- Student operator++(Student& s)
- Student& operator++(Student& s)
这 2 2 2 个函数被看做相同的函数 ,

上述重载函数定义 , 在编译时报错 ,
error C2556: “Student operator ++(Student &)”: 重载函数与“Student &operator ++(Student &)”只是在返回类型上不同

2、后置运算符重载添加 int 占位参数
因此 , 后置运算符重载 , 通常需要一个 占位参数 int ;
这个参数没有实际的意义 , 只是为了和 前置运算符重载 进行区别 ;
// 使用 全局函数 实现 后置 ++ 自增运算符重载
// 重载 后置 ++ 运算符
// 实现 1 个 Student 对象 自增运算
// 先使用 参数中的 Student& s 对象 , 再自增
// 因此 Student& s 对象是需要自增的
// 但是使用的对象 就是 返回的对象, 必须是没有自增的对象
// 这里使用 ret 保存 s 对象值 , 然后返回该 ret 值
// s 对象中的值自增
// 返回的是一个新 Student 对象
Student operator++(Student& s, int)
{Student ret = s;s.age++;s.height++;return ret;
};
占位参数 参考 【C++】函数参数扩展 ② ( 占位参数 | 占位参数规则 - 必须为占位参数传入实参 | 默认参数与占位参数结合使用 ) 博客 ;
相关文章:
【C++】运算符重载 ⑥ ( 一元运算符重载 | 后置运算符重载 | 前置运算符重载 与 后置运算符重载 的区别 | 后置运算符重载添加 int 占位参数 )
文章目录 一、后置运算符重载1、前置运算符重载 与 后置运算符重载 的区别2、后置运算符重载添加 int 占位参数 上 2 2 2 篇博客 【C】运算符重载 ④ ( 一元运算符重载 | 使用 全局函数 实现 前置 自增运算符重载 | 使用 全局函数 实现 前置 - - 自减运算符重载 )【C】运算符…...
538. 把二叉搜索树转换为累加树
题目描述 给出二叉 搜索 树的根节点,该树的节点值各不相同,请你将其转换为累加树(Greater Sum Tree),使每个节点 node 的新值等于原树中大于或等于 node.val 的值之和。 提醒一下,二叉搜索树满足下列约束…...
java8日期时间工具类
【README】 1)本文总结了java8中日期时间常用工具方法;包括: 日期时间对象格式化为字符串;日期时间字符串解析为日期时间对象;日期时间对象转换; 转换过程中,需要注意的是: Instan…...
算法-动态规划/trie树-单词拆分
算法-动态规划/trie树-单词拆分 1 题目概述 1.1 题目出处 https://leetcode.cn/problems/word-break/description/?envTypestudy-plan-v2&envIdtop-interview-150 1.2 题目描述 2 动态规划 2.1 解题思路 dp[i]表示[0, i)字符串可否构建那么dp[i]可构建的条件是&…...
React框架核心原理
一、整体架构 三大核心库与对应的组件 history -> react-router -> react-router-dom react-router 可视为react-router-dom 的核心,里面封装了<Router>,<Route>,<Switch>等核心组件,实现了从路由的改变到组件的更新…...
python-pytorch 利用pytorch对堆叠自编码器进行训练和验证
利用pytorch对堆叠自编码器进行训练和验证 一、数据生成二、定义自编码器模型三、训练函数四、训练堆叠自编码器五、将已训练的自编码器级联六、微调整个堆叠自编码器 一、数据生成 随机生成一些数据来模拟训练和验证数据集: import torch# 随机生成数据 n_sample…...
制作 3 档可调灯程序编写
PWM 0~255 可以将数据映射到0 75 150 225 尽可能均匀电压间隔...
源码分享-M3U8数据流ts的AES-128解密并合并---GoLang实现
之前使用C语言实现了一次,见M3U8数据流ts的AES-128解密并合并。 学习了Go语言后,又用Go重新实现了一遍。源码如下,无第三方库依赖。 package mainimport ("crypto/aes""crypto/cipher""encoding/binary"&quo…...
CSDN Q: “这段代码算是在STC89C52RC51单片机上完成PWM呼吸灯了吗?“
这是 CSDN上的一个问题 这段代码算是在STC89C52RC51单片机上完成PWM呼吸灯了吗,还是说得用上定时器和中断函数#include <regx52.h> 我个人认为: 效果上来说, 是的! 码以 以Time / 100-Time 调 Duty, 而 for i loop成 Period, 加上延时, 实现了 PWM周期, 虽然…...
Linux系统编程系列之线程池
Linux系统编程系列(16篇管饱,吃货都投降了!) 1、Linux系统编程系列之进程基础 2、Linux系统编程系列之进程间通信(IPC)-信号 3、Linux系统编程系列之进程间通信(IPC)-管道 4、Linux系统编程系列之进程间通信-IPC对象 5、Linux系统…...
Linux CentOS7 vim多文件与多窗口操作
窗口是可视化的分割区域。Windows中窗口的概念与linux中基本相同。连接xshell就是在Windows中新建一个窗口。而vim打开一个文件默认创建一个窗口。同时,Vim打开一个文件也就会建立一个缓冲区,打开多个文件就会创建多个缓冲区。 本文讨论vim中打开多个文…...
SPI 通信协议
1. SPI通信 1. 什么是SPI通信协议 2. SPI的通信过程 在一开始会先把发送缓冲器的数据(8位)。一次性放到移位寄存器里。 移位寄存器会一位一位发送出去。但是要先放到锁存器里。然后从机来读取。从机的过程也一样。当移位寄存器的数据全部发送完。其实…...
【图像处理】使用各向异性滤波器和分割图像处理从MRI图像检测脑肿瘤(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
5个适合初学者的初级网络安全工作,网络安全就业必看
前言 网络安全涉及保护计算机系统、网络和数据免受未经授权的访问、破坏和盗窃 - 防止数字活动和数据访问的中断 - 同时也保护用户的资产和隐私。鉴于公共事业、医疗保健、金融以及联邦政府等行业的网络犯罪攻击不断升级,对网络专业人员的需求很高,这并…...
Kafka核心原理
1、Topic的分片和副本机制 分片作用: 解决单台节点容量有限的问题,节点多,效率提升,吞吐量提升。通过分片,将一个大的容器分解为多个小的容器,分布在不同的节点上,从而实现分布式存储。 分片…...
探秘前后端开发世界:猫头虎带你穿梭编程的繁忙街区,解锁全栈之路
🌷🍁 博主猫头虎 带您 Go to New World.✨🍁 🦄 博客首页——猫头虎的博客🎐 🐳《面试题大全专栏》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺 &a…...
洛谷_分支循环
p2433 问题 5 甲列火车长 260 米,每秒行 12 米;乙列火车长220 米,每秒行 20 米,两车相向而行,从两车车头相遇时开始计时,多长时间后两车车尾相离?已知答案是整数。 计算方式:两车车…...
MySQL数据库入门到精通——进阶篇(3)
黑马程序员 MySQL数据库入门到精通——进阶篇(3) 1. 锁1.1 锁-介绍1.2 锁-全局锁1.3 锁-表级锁1.3.1 表级锁-表锁1.3.2 表级锁元数据锁( meta data lock,MDL)1.3.3 表级锁-意向锁1.3.4 表级锁意向锁测试 1.4 锁-行级锁1.4.1 行级锁-行锁1.4.2…...
Mind Map:大语言模型中的知识图谱提示激发思维图10.1+10.2
知识图谱提示激发思维图 摘要介绍相关工作方法第一步:证据图挖掘第二步:证据图聚合第三步:LLM Mind Map推理 实验实验设置医学问答长对话问题使用KG的部分知识生成深入分析 总结 摘要 LLM通常在吸收新知识的能力、generation of hallucinati…...
[引擎开发] 杂谈ue4中的Vulkan
接触Vulkan大概也有大半年,概述一下自己这段时间了解到的东西。本文实际上是杂谈性质而非综述性质,带有严重的主观认知,因此并没有那么严谨。 使用Vulkan会带来什么呢?简单来说就是对底层更好的控制。这意味着我们能够有更多的手段…...
C++实现分布式网络通信框架RPC(3)--rpc调用端
目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中,我们已经大致实现了rpc服务端的各项功能代…...
渲染学进阶内容——模型
最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...
镜像里切换为普通用户
如果你登录远程虚拟机默认就是 root 用户,但你不希望用 root 权限运行 ns-3(这是对的,ns3 工具会拒绝 root),你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案:创建非 roo…...
什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南
文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果(yakit方式)
本期内容并不是很难,相信大家会学的很愉快,当然对于有后端基础的朋友来说,本期内容更加容易了解,当然没有基础的也别担心,本期内容会详细解释有关内容 本期用到的软件:yakit(因为经过之前好多期…...
从实验室到产业:IndexTTS 在六大核心场景的落地实践
一、内容创作:重构数字内容生产范式 在短视频创作领域,IndexTTS 的语音克隆技术彻底改变了配音流程。B 站 UP 主通过 5 秒参考音频即可克隆出郭老师音色,生成的 “各位吴彦祖们大家好” 语音相似度达 97%,单条视频播放量突破百万…...
Python的__call__ 方法
在 Python 中,__call__ 是一个特殊的魔术方法(magic method),它允许一个类的实例像函数一样被调用。当你在一个对象后面加上 () 并执行时(例如 obj()),Python 会自动调用该对象的 __call__ 方法…...
【版本控制】GitHub Desktop 入门教程与开源协作全流程解析
目录 0 引言1 GitHub Desktop 入门教程1.1 安装与基础配置1.2 核心功能使用指南仓库管理日常开发流程分支管理 2 GitHub 开源协作流程详解2.1 Fork & Pull Request 模型2.2 完整协作流程步骤步骤 1: Fork(创建个人副本)步骤 2: Clone(克隆…...
MeanFlow:何凯明新作,单步去噪图像生成新SOTA
1.简介 这篇文章介绍了一种名为MeanFlow的新型生成模型框架,旨在通过单步生成过程高效地将先验分布转换为数据分布。文章的核心创新在于引入了平均速度的概念,这一概念的引入使得模型能够通过单次函数评估完成从先验分布到数据分布的转换,显…...
