【C++】运算符重载 ⑥ ( 一元运算符重载 | 后置运算符重载 | 前置运算符重载 与 后置运算符重载 的区别 | 后置运算符重载添加 int 占位参数 )
文章目录
- 一、后置运算符重载
- 1、前置运算符重载 与 后置运算符重载 的区别
- 2、后置运算符重载添加 int 占位参数
上 2 2 2 篇博客
- 【C++】运算符重载 ④ ( 一元运算符重载 | 使用 全局函数 实现 前置 ++ 自增运算符重载 | 使用 全局函数 实现 前置 - - 自减运算符重载 )
- 【C++】运算符重载 ⑤ ( 一元运算符重载 | 使用 成员函数 实现 前置 ++ 自增运算符重载 | 使用 成员函数 实现 前置 - - 自减运算符重载 )
讲解了 前置运算符 的 重载 , 前置运算符就是 ++Object
或 --Object
, 一元运算符 在 对象的 前面 ;
本篇博客开始讲解 后置运算符 的重载 ;
一、后置运算符重载
1、前置运算符重载 与 后置运算符重载 的区别
后置运算符 是 Object++
或 Object--
, 一元运算符在对象的后面 ;
前置运算符重载 与 后置运算符重载 的区别是 返回值类型 不同 ,
- 前置运算符重载 , 返回值是 对象引用 ;
// 使用 全局函数 实现 前置 ++ 自增运算符重载
// 重载 前置 ++ 运算符
// 实现 1 个 Student 对象 自增运算
// 由于 参数中的 Student& s 中的属性发生了变化
// 返回时仍需要返回 Student& s 参数本身
Student& operator++(Student& s)
{s.age++;s.height++;return s;
};
- 后置运算符重载 , 返回值是 匿名对象 ;
// 使用 全局函数 实现 后置 ++ 自增运算符重载
// 重载 后置 ++ 运算符
// 实现 1 个 Student 对象 自增运算
// 先使用 参数中的 Student& s 对象 , 再自增
// 因此 Student& s 对象是需要自增的
// 但是使用的对象 就是 返回的对象, 必须是没有自增的对象
// 这里使用 ret 保存 s 对象值 , 然后返回该 ret 值
// s 对象中的值自增
// 返回的是一个新 Student 对象
Student operator++(Student& s)
{Student ret = s;s.age++;s.height++;return ret;
};
由于 重载函数 只看 函数名 和 参数列表 , 不看返回值 , 因此
- Student operator++(Student& s)
- Student& operator++(Student& s)
这 2 2 2 个函数被看做相同的函数 ,
上述重载函数定义 , 在编译时报错 ,
error C2556: “Student operator ++(Student &)”: 重载函数与“Student &operator ++(Student &)”只是在返回类型上不同
2、后置运算符重载添加 int 占位参数
因此 , 后置运算符重载 , 通常需要一个 占位参数 int ;
这个参数没有实际的意义 , 只是为了和 前置运算符重载 进行区别 ;
// 使用 全局函数 实现 后置 ++ 自增运算符重载
// 重载 后置 ++ 运算符
// 实现 1 个 Student 对象 自增运算
// 先使用 参数中的 Student& s 对象 , 再自增
// 因此 Student& s 对象是需要自增的
// 但是使用的对象 就是 返回的对象, 必须是没有自增的对象
// 这里使用 ret 保存 s 对象值 , 然后返回该 ret 值
// s 对象中的值自增
// 返回的是一个新 Student 对象
Student operator++(Student& s, int)
{Student ret = s;s.age++;s.height++;return ret;
};
占位参数 参考 【C++】函数参数扩展 ② ( 占位参数 | 占位参数规则 - 必须为占位参数传入实参 | 默认参数与占位参数结合使用 ) 博客 ;
相关文章:

【C++】运算符重载 ⑥ ( 一元运算符重载 | 后置运算符重载 | 前置运算符重载 与 后置运算符重载 的区别 | 后置运算符重载添加 int 占位参数 )
文章目录 一、后置运算符重载1、前置运算符重载 与 后置运算符重载 的区别2、后置运算符重载添加 int 占位参数 上 2 2 2 篇博客 【C】运算符重载 ④ ( 一元运算符重载 | 使用 全局函数 实现 前置 自增运算符重载 | 使用 全局函数 实现 前置 - - 自减运算符重载 )【C】运算符…...

538. 把二叉搜索树转换为累加树
题目描述 给出二叉 搜索 树的根节点,该树的节点值各不相同,请你将其转换为累加树(Greater Sum Tree),使每个节点 node 的新值等于原树中大于或等于 node.val 的值之和。 提醒一下,二叉搜索树满足下列约束…...
java8日期时间工具类
【README】 1)本文总结了java8中日期时间常用工具方法;包括: 日期时间对象格式化为字符串;日期时间字符串解析为日期时间对象;日期时间对象转换; 转换过程中,需要注意的是: Instan…...

算法-动态规划/trie树-单词拆分
算法-动态规划/trie树-单词拆分 1 题目概述 1.1 题目出处 https://leetcode.cn/problems/word-break/description/?envTypestudy-plan-v2&envIdtop-interview-150 1.2 题目描述 2 动态规划 2.1 解题思路 dp[i]表示[0, i)字符串可否构建那么dp[i]可构建的条件是&…...

React框架核心原理
一、整体架构 三大核心库与对应的组件 history -> react-router -> react-router-dom react-router 可视为react-router-dom 的核心,里面封装了<Router>,<Route>,<Switch>等核心组件,实现了从路由的改变到组件的更新…...
python-pytorch 利用pytorch对堆叠自编码器进行训练和验证
利用pytorch对堆叠自编码器进行训练和验证 一、数据生成二、定义自编码器模型三、训练函数四、训练堆叠自编码器五、将已训练的自编码器级联六、微调整个堆叠自编码器 一、数据生成 随机生成一些数据来模拟训练和验证数据集: import torch# 随机生成数据 n_sample…...

制作 3 档可调灯程序编写
PWM 0~255 可以将数据映射到0 75 150 225 尽可能均匀电压间隔...
源码分享-M3U8数据流ts的AES-128解密并合并---GoLang实现
之前使用C语言实现了一次,见M3U8数据流ts的AES-128解密并合并。 学习了Go语言后,又用Go重新实现了一遍。源码如下,无第三方库依赖。 package mainimport ("crypto/aes""crypto/cipher""encoding/binary"&quo…...
CSDN Q: “这段代码算是在STC89C52RC51单片机上完成PWM呼吸灯了吗?“
这是 CSDN上的一个问题 这段代码算是在STC89C52RC51单片机上完成PWM呼吸灯了吗,还是说得用上定时器和中断函数#include <regx52.h> 我个人认为: 效果上来说, 是的! 码以 以Time / 100-Time 调 Duty, 而 for i loop成 Period, 加上延时, 实现了 PWM周期, 虽然…...

Linux系统编程系列之线程池
Linux系统编程系列(16篇管饱,吃货都投降了!) 1、Linux系统编程系列之进程基础 2、Linux系统编程系列之进程间通信(IPC)-信号 3、Linux系统编程系列之进程间通信(IPC)-管道 4、Linux系统编程系列之进程间通信-IPC对象 5、Linux系统…...

Linux CentOS7 vim多文件与多窗口操作
窗口是可视化的分割区域。Windows中窗口的概念与linux中基本相同。连接xshell就是在Windows中新建一个窗口。而vim打开一个文件默认创建一个窗口。同时,Vim打开一个文件也就会建立一个缓冲区,打开多个文件就会创建多个缓冲区。 本文讨论vim中打开多个文…...

SPI 通信协议
1. SPI通信 1. 什么是SPI通信协议 2. SPI的通信过程 在一开始会先把发送缓冲器的数据(8位)。一次性放到移位寄存器里。 移位寄存器会一位一位发送出去。但是要先放到锁存器里。然后从机来读取。从机的过程也一样。当移位寄存器的数据全部发送完。其实…...

【图像处理】使用各向异性滤波器和分割图像处理从MRI图像检测脑肿瘤(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

5个适合初学者的初级网络安全工作,网络安全就业必看
前言 网络安全涉及保护计算机系统、网络和数据免受未经授权的访问、破坏和盗窃 - 防止数字活动和数据访问的中断 - 同时也保护用户的资产和隐私。鉴于公共事业、医疗保健、金融以及联邦政府等行业的网络犯罪攻击不断升级,对网络专业人员的需求很高,这并…...
Kafka核心原理
1、Topic的分片和副本机制 分片作用: 解决单台节点容量有限的问题,节点多,效率提升,吞吐量提升。通过分片,将一个大的容器分解为多个小的容器,分布在不同的节点上,从而实现分布式存储。 分片…...

探秘前后端开发世界:猫头虎带你穿梭编程的繁忙街区,解锁全栈之路
🌷🍁 博主猫头虎 带您 Go to New World.✨🍁 🦄 博客首页——猫头虎的博客🎐 🐳《面试题大全专栏》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺 &a…...
洛谷_分支循环
p2433 问题 5 甲列火车长 260 米,每秒行 12 米;乙列火车长220 米,每秒行 20 米,两车相向而行,从两车车头相遇时开始计时,多长时间后两车车尾相离?已知答案是整数。 计算方式:两车车…...

MySQL数据库入门到精通——进阶篇(3)
黑马程序员 MySQL数据库入门到精通——进阶篇(3) 1. 锁1.1 锁-介绍1.2 锁-全局锁1.3 锁-表级锁1.3.1 表级锁-表锁1.3.2 表级锁元数据锁( meta data lock,MDL)1.3.3 表级锁-意向锁1.3.4 表级锁意向锁测试 1.4 锁-行级锁1.4.1 行级锁-行锁1.4.2…...

Mind Map:大语言模型中的知识图谱提示激发思维图10.1+10.2
知识图谱提示激发思维图 摘要介绍相关工作方法第一步:证据图挖掘第二步:证据图聚合第三步:LLM Mind Map推理 实验实验设置医学问答长对话问题使用KG的部分知识生成深入分析 总结 摘要 LLM通常在吸收新知识的能力、generation of hallucinati…...

[引擎开发] 杂谈ue4中的Vulkan
接触Vulkan大概也有大半年,概述一下自己这段时间了解到的东西。本文实际上是杂谈性质而非综述性质,带有严重的主观认知,因此并没有那么严谨。 使用Vulkan会带来什么呢?简单来说就是对底层更好的控制。这意味着我们能够有更多的手段…...

国防科技大学计算机基础课程笔记02信息编码
1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...

业务系统对接大模型的基础方案:架构设计与关键步骤
业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容
基于 UniApp + WebSocket实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...
Linux云原生安全:零信任架构与机密计算
Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)
宇树机器人多姿态起立控制强化学习框架论文解析 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一) 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

2025盘古石杯决赛【手机取证】
前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...
【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)
升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求ÿ…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

用docker来安装部署freeswitch记录
今天刚才测试一个callcenter的项目,所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...