十天学完基础数据结构-第九天(堆(Heap))

堆的基本概念
堆是一种特殊的树形数据结构,通常用于实现优先级队列。堆具有以下两个主要特点:
-
父节点的值始终大于或等于其子节点的值(最大堆),或者父节点的值始终小于或等于其子节点的值(最小堆)。
-
堆是一棵完全二叉树,这意味着所有层级除了最后一层都是完全填满的,最后一层从左到右填充。
最大堆和最小堆的定义
-
最大堆(Max Heap):在最大堆中,父节点的值始终大于或等于其子节点的值,这意味着根节点是堆中的最大元素。
-
最小堆(Min Heap):在最小堆中,父节点的值始终小于或等于其子节点的值,这意味着根节点是堆中的最小元素。
堆的常见操作
堆支持一些常见的操作,包括:
-
插入(Insertion):将新元素插入堆中,然后重新调整堆,以维护堆的性质。
-
删除(Deletion):删除堆中的根节点,然后重新调整堆,以维护堆的性质。
-
堆排序(Heap Sort):使用堆进行排序,将堆顶元素(最大或最小元素)与最后一个元素交换,然后减小堆的大小,并重新调整堆,重复此过程直到排序完成。
任务
堆在许多算法中都有广泛应用,包括Dijkstra算法、优先级队列等。掌握堆排序算法,这是一种高效的排序算法。
示例代码 - 使用C++创建最大堆和进行堆排序:
#include <iostream>
#include <vector>
#include <algorithm>class MaxHeap {
public:MaxHeap() {}// 插入元素void insert(int value) {heap.push_back(value);int index = heap.size() - 1;heapifyUp(index);}// 删除最大元素void removeMax() {if (isEmpty()) {return;}std::swap(heap[0], heap.back());heap.pop_back();heapifyDown(0);}// 堆排序void heapSort() {int n = heap.size();for (int i = n / 2 - 1; i >= 0; i--) {heapifyDown(i);}for (int i = n - 1; i > 0; i--) {std::swap(heap[0], heap[i]);heapifyDown(0, i);}}// 判断堆是否为空bool isEmpty() {return heap.empty();}private:std::vector<int> heap;void heapifyUp(int index) {while (index > 0) {int parent = (index - 1) / 2;if (heap[index] <= heap[parent]) {break;}std::swap(heap[index], heap[parent]);index = parent;}}void heapifyDown(int index, int size = -1) {if (size == -1) {size = heap.size();}while (true) {int leftChild = 2 * index + 1;int rightChild = 2 * index + 2;int largest = index;if (leftChild < size && heap[leftChild] > heap[largest]) {largest = leftChild;}if (rightChild < size && heap[rightChild] > heap[largest]) {largest = rightChild;}if (largest == index) {break;}std::swap(heap[index], heap[largest]);index = largest;}}
};int main() {MaxHeap maxHeap;maxHeap.insert(5);maxHeap.insert(10);maxHeap.insert(3);maxHeap.insert(8);maxHeap.insert(1);std::cout << "堆排序前:";for (int num : maxHeap) {std::cout << num << " ";}maxHeap.heapSort();std::cout << "\n堆排序后:";for (int num : maxHeap) {std::cout << num << " ";}return 0;
}
练习题:
-
解释堆的基本概念中的最大堆和最小堆的定义。
-
描述堆排序的步骤。
-
为什么堆可以用于高效的优先级队列实现?
-
在给定的一组元素中,如何创建一个最大堆?使用C++编写相应的代码。
-
在给定的一组元素中,如何使用堆排序进行排序?使用C++
解释堆的基本概念中的最大堆和最小堆的定义。
-
最大堆(Max Heap):在最大堆中,每个父节点的值都大于或等于其子节点的值。这意味着根节点包含堆中的最大元素。
-
最小堆(Min Heap):在最小堆中,每个父节点的值都小于或等于其子节点的值。这意味着根节点包含堆中的最小元素。
描述堆排序的步骤。
堆排序是一种原地、稳定的排序算法,它的步骤如下:
-
构建一个最大堆或最小堆,将数组视为堆。
-
不断从堆顶(最大值或最小值)移除元素,并将其放入已排序部分的末尾。
-
重复第二步,直到堆为空。
这个过程保证了每次移除的元素都是当前堆中的最大(最小)值,因此最终得到一个有序的数组。
为什么堆可以用于高效的优先级队列实现?
堆可以用于高效的优先级队列实现,因为堆的结构允许我们快速找到并删除最大(最小)元素,以及迅速插入新元素。这在许多算法和数据结构中都非常有用,如Dijkstra算法、Prim算法、任务调度等。堆的时间复杂度为O(log n),其中n是堆的大小,这使得优先级队列的操作非常高效。
在给定的一组元素中,如何创建一个最大堆?使用C++编写相应的代码。
创建最大堆的关键是从数组构建一个满足最大堆性质的堆。以下是使用C++创建最大堆的示例代码:
#include <iostream>
#include <vector>void maxHeapify(std::vector<int>& arr, int size, int i) {int largest = i;int left = 2 * i + 1;int right = 2 * i + 2;if (left < size && arr[left] > arr[largest]) {largest = left;}if (right < size && arr[right] > arr[largest]) {largest = right;}if (largest != i) {std::swap(arr[i], arr[largest]);maxHeapify(arr, size, largest);}
}void buildMaxHeap(std::vector<int>& arr) {int size = arr.size();for (int i = size / 2 - 1; i >= 0; i--) {maxHeapify(arr, size, i);}
}int main() {std::vector<int> arr = {4, 10, 3, 5, 1};int size = arr.size();buildMaxHeap(arr);std::cout << "最大堆:";for (int num : arr) {std::cout << num << " ";}return 0;
}
运行结果:
在给定的一组元素中,如何使用堆排序进行排序?使用C++编写相应的代码。
堆排序的关键是将堆顶元素与数组末尾元素交换,然后减小堆的大小并重新调整堆。以下是使用C++进行堆排序的示例代码:
#include <iostream>
#include <vector>void maxHeapify(std::vector<int>& arr, int size, int i) {int largest = i;int left = 2 * i + 1;int right = 2 * i + 2;if (left < size && arr[left] > arr[largest]) {largest = left;}if (right < size && arr[right] > arr[largest]) {largest = right;}if (largest != i) {std::swap(arr[i], arr[largest]);maxHeapify(arr, size, largest);}
}void heapSort(std::vector<int>& arr) {int size = arr.size();for (int i = size / 2 - 1; i >= 0; i--) {maxHeapify(arr, size, i);}for (int i = size - 1; i > 0; i--) {std::swap(arr[0], arr[i]);maxHeapify(arr, i, 0);}
}int main() {std::vector<int> arr = {4, 10, 3, 5, 1};int size = arr.size();heapSort(arr);std::cout << "堆排序结果:";for (int num : arr) {std::cout << num << " ";}return 0;
}
运行结果:

相关文章:
十天学完基础数据结构-第九天(堆(Heap))
堆的基本概念 堆是一种特殊的树形数据结构,通常用于实现优先级队列。堆具有以下两个主要特点: 父节点的值始终大于或等于其子节点的值(最大堆),或者父节点的值始终小于或等于其子节点的值(最小堆ÿ…...
vertx的学习总结7之用kotlin 与vertx搞一个简单的http
这里我就简单的聊几句,如何用vertx web来搞一个web项目的 1、首先先引入几个依赖,这里我就用maven了,这个是kotlinvertx web <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apac…...
golang学习笔记(二):链路追踪
自定义http连接的服务端 package serverimport ("github.com/gin-gonic/gin""go.opentelemetry.io/contrib/instrumentation/github.com/gin-gonic/gin/otelgin""net/http" )type MyServer struct {Server *http.Server }func GetServer() *MyS…...
git提交代码实际操作
1.仓库的代码 2.克隆代码下存在的分支 git clobe https://gitee.com/sadsadasad/big-event-11.git 3.查看当下存在的分支 git branch -a 在很多情况下,我们是要围绕着dev分支进行开发,所以我们可以在开发之前问明白围绕那个分支进行开发。 4.直接拉去dev分支代码 5.如果没在…...
TF坐标变换
ROS小乌龟跟随 5.1 TF坐标变换 Autolabor-ROS机器人入门课程《ROS理论与实践》零基础教程 tf模块:在 ROS 中用于实现不同坐标系之间的点或向量的转换。 在ROS中坐标变换最初对应的是tf,不过在 hydro 版本开始, tf 被弃用,迁移到 tf2,后者更…...
如何进行网络编程和套接字操作?
网络编程是计算机编程中重要的领域之一,它使程序能够在网络上进行数据传输和通信。C语言是一种强大的编程语言,也可以用于网络编程。网络编程通常涉及套接字(Socket)操作,套接字是一种用于网络通信的抽象接口。本文将详…...
在Spark中集成和使用Hudi
本文介绍了在Spark中集成和使用Hudi的功能。使用Spark数据源API(scala和python)和Spark SQL,插入、更新、删除和查询Hudi表的代码片段。 1.安装 Hudi适用于Spark-2.4.3+和Spark 3.x版本。 1.1 Spark 3支持矩阵 Hudi...
力扣第226翻转二叉数 c++三种方法 +注释
题目 226. 翻转二叉树 简单 给你一棵二叉树的根节点 root ,翻转这棵二叉树,并返回其根节点。 示例 1: 输入:root [4,2,7,1,3,6,9] 输出:[4,7,2,9,6,3,1]示例 2: 输入:root [2,1,3] 输出&am…...
React项目部署 - Nginx配置
写在前面:博主是一只经过实战开发历练后投身培训事业的“小山猪”,昵称取自动画片《狮子王》中的“彭彭”,总是以乐观、积极的心态对待周边的事物。本人的技术路线从Java全栈工程师一路奔向大数据开发、数据挖掘领域,如今终有小成…...
【Vue3】定义全局变量和全局函数
// main.ts import { createApp } from vue import App from ./App.vue const app createApp(App)// 解决 ts 报错 type Filter {format<T>(str: T): string } declare module vue {export interface ComponentCustomProperties {$filters: Filter,$myArgs: string} }a…...
【Pandas】Apply自定义行数
文章目录 1. Series的apply方法2. DataFrame的apply方法2.1 针对列使用apply2.2 针对行使用apply Pandas提供了很多数据处理的API,但当提供的API不能满足需求的时候,需要自己编写数据处理函数, 这个时候可以使用apply函数apply函数可以接收一个自定义函数, 可以将DataFrame的行…...
C#,数值计算——完全VEGAS编码的蒙特·卡洛计算方法与源程序
1 文本格式 using System; namespace Legalsoft.Truffer { /// <summary> /// Complete VEGAS Code /// adaptive/recursive Monte Carlo /// </summary> public abstract class VEGAS { const int NDMX 50; const int …...
纯css实现3D鼠标跟随倾斜
老规矩先上图 为什么今天会想起来整这个呢?这是因为和我朋友吵架, 就是关于这个效果的,就是这个 卡片懸停毛玻璃效果, 我朋友认为纯css也能写, 我则坦言他就是在放狗屁,这种跟随鼠标的3D效果要怎么可能能用纯css写, 然后吵着吵着发现,欸,好像真能用css写哦,我以前还写过这种…...
Pandas数据结构
文章目录 1. Series数据结构1.1 Series数据类型创建1.2 Series的常用属性valuesindex/keys()shapeTloc/iloc 1.3 Series的常用方法mean()max()/min()var()/std()value_counts()describe() 1.4 Series运算加/减法乘法 2. DataFrame数据结构2.1 DataFrame数据类型创建2.2 布尔索引…...
systemverilog function的一点小case
关于function的应用无论是在systemverilog还是verilog中都有很广泛的应用,但是一直有一个模糊的概念困扰着我,今天刚好有时间来搞清楚并记录下来。 关于fucntion的返回值的问题: function integer clog2( input logic[255:0] value);for(cl…...
微服务的初步使用
环境说明 jdk1.8 maven3.6.3 mysql8 idea2022 spring cloud2022.0.8 微服务案例的搭建 新建父工程 打开IDEA,File->New ->Project,填写Name(工程名称)和Location(工程存储位置),选…...
【2023年11月第四版教材】第18章《项目绩效域》(合集篇)
第18章《项目绩效域》(合集篇) 1 章节内容2 干系人绩效域2.1 绩效要点2.2 执行效果检查2.3 与其他绩效域的相互作用 3 团队绩效域3.1 绩效要点3.2 与其他绩效域的相互作用3.3 执行效果检查3.4 开发方法和生命周期绩效域 4 绩效要点4.1 与其他绩效域的相互…...
Android 11.0 mt6771新增分区功能实现三
1.前言 在11.0的系统开发中,在对某些特殊模块中关于数据的存储方面等需要新增分区来保存, 所以就需要在系统分区新增分区,接下来就来实现这个功能,看系列三的实现过程 2.mt6771新增分区功能实现三的核心类 build/make/tools/releasetools/common.py device/mediatek/mt6…...
计算机网络——计算机网络的性能指标(上)-速率、带宽、吞吐量、时延
目录 速率 比特 速率 例1 带宽 带宽在模拟信号系统中的意义 带宽在计算机网络中的意义 吞吐量 时延 发送时延 传播时延 处理时延 例2 例3 速率 了解速率之前,先详细了解一下比特: 比特 计算机中数据量的单位,也是信息论中信…...
每日一题 518零钱兑换2(完全背包)
题目 给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带符号整…...
React 第五十五节 Router 中 useAsyncError的使用详解
前言 useAsyncError 是 React Router v6.4 引入的一个钩子,用于处理异步操作(如数据加载)中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误:捕获在 loader 或 action 中发生的异步错误替…...
springboot 百货中心供应链管理系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,百货中心供应链管理系统被用户普遍使用,为方…...
uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖
在前面的练习中,每个页面需要使用ref,onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入,需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...
STM32标准库-DMA直接存储器存取
文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA(Direct Memory Access)直接存储器存取 DMA可以提供外设…...
OkHttp 中实现断点续传 demo
在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...
python如何将word的doc另存为docx
将 DOCX 文件另存为 DOCX 格式(Python 实现) 在 Python 中,你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是,.doc 是旧的 Word 格式,而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...
第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明
AI 领域的快速发展正在催生一个新时代,智能代理(agents)不再是孤立的个体,而是能够像一个数字团队一样协作。然而,当前 AI 生态系统的碎片化阻碍了这一愿景的实现,导致了“AI 巴别塔问题”——不同代理之间…...
【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)
骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术,它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton):由层级结构的骨头组成,类似于人体骨骼蒙皮 (Mesh Skinning):将模型网格顶点绑定到骨骼上,使骨骼移动…...
自然语言处理——Transformer
自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...
深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...
