基于自私羊群优化的BP神经网络(分类应用) - 附代码
基于自私羊群优化的BP神经网络(分类应用) - 附代码
文章目录
- 基于自私羊群优化的BP神经网络(分类应用) - 附代码
- 1.鸢尾花iris数据介绍
- 2.数据集整理
- 3.自私羊群优化BP神经网络
- 3.1 BP神经网络参数设置
- 3.2 自私羊群算法应用
- 4.测试结果:
- 5.Matlab代码
摘要:本文主要介绍如何用自私羊群算法优化BP神经网络,利用鸢尾花数据,做一个简单的讲解。
1.鸢尾花iris数据介绍
本案例利用matlab公用的iris鸢尾花数据,作为测试数据,iris数据是特征为4维,类别为3个类别。数据格式如下:
| 特征1 | 特征2 | 特征3 | 类别 | |
|---|---|---|---|---|
| 单组iris数据 | 5.3 | 2.1 | 1.2 | 1 |
3种类别用1,2,3表示。
2.数据集整理
iris数据总共包含150组数据,将其分为训练集105组,测试集45组。如下表所示:
| 训练集(组) | 测试集(组) | 总数据(组) |
|---|---|---|
| 105 | 45 | 150 |
类别数据处理:原始数据类别用1,2,3表示为了方便神经网络训练,类别1,2,3分别用1,0,0;0,1,0;0,0,1表示。
当进行数据训练对所有输入特征数据均进行归一化处理。
3.自私羊群优化BP神经网络
3.1 BP神经网络参数设置
通常而言,利用智能算法一般优化BP神经网络的初始权值和阈值来改善BP神经网络的性能。本案例基于iris数据,由于iris数据维度不高,采用简单的BP神经网络。神经网络参数如下:

神经网络参数如下:
%创建神经网络
inputnum = 4; %inputnum 输入层节点数 4维特征
hiddennum = 10; %hiddennum 隐含层节点数
outputnum = 3; %outputnum 隐含层节点数
net = newff( minmax(input) , [hiddennum outputnum] , { 'logsig' 'purelin' } , 'traingdx' ) ;
%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 200 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ;
3.2 自私羊群算法应用
自私羊群算法原理请参考:https://blog.csdn.net/u011835903/article/details/108546124
自私羊群算法的参数设置为:
popsize = 10;%种群数量Max_iteration = 15;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
% inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
% hiddennum + outputnum 为权值的个数
dim = inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;% inputnum * hiddennum + hiddennum*outputnum维度
这里需要注意的是,神经网络的阈值数量计算方式如下:
本网络有2层:
第一层的阈值数量为:4*10 = 40; 即inputnum * hiddennum;
第一层的权值数量为:10;即hiddennum;
第二层的阈值数量为:3*10 = 30;即hiddenum * outputnum;
第二层权值数量为:3;即outputnum;
于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 83;
适应度函数值设定:
本文设置适应度函数如下:
f i t n e s s = a r g m i n ( T r a i n D a t a E r r o r R a t e + T e s t D a t a E r r o r R a t e ) fitness = argmin(TrainDataErrorRate + TestDataErrorRate) fitness=argmin(TrainDataErrorRate+TestDataErrorRate)
其中TrainDataErrorRate,TestDataErrorRate分别为训练集和测试集的错误分类率。适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。
4.测试结果:
从自私羊群算法的收敛曲线可以看到,整体误差是不断下降的,说明自私羊群算法起到了优化的作用:



5.Matlab代码
相关文章:
基于自私羊群优化的BP神经网络(分类应用) - 附代码
基于自私羊群优化的BP神经网络(分类应用) - 附代码 文章目录 基于自私羊群优化的BP神经网络(分类应用) - 附代码1.鸢尾花iris数据介绍2.数据集整理3.自私羊群优化BP神经网络3.1 BP神经网络参数设置3.2 自私羊群算法应用 4.测试结果…...
AI绘图:GPT4技术的艺术化呈现与无限可能
了解更多点击《AI绘图:GPT4技术的艺术化呈现与无限可能》 GPT对于每个科研人员已经成为不可或缺的辅助工具,不同的研究领域和项目具有不同的需求。例如在科研编程、绘图领域: 1、编程建议和示例代码: 无论你使用的编程语言是Python、R、MATL…...
Go Gin Gorm Casbin权限管理实现 - 1. Casbin概念介绍以及库使用
1. 核心概念 核心配置中含两部分模型配置以及策略配置,给出两个示范配置,在此基础上对实际请求进行分析。 1.1 Model 模型文件,存储了请求定义(request_definition),策略定义(policy_definition),匹配规则(matchers)&a…...
JUC第十五讲:JUC集合-ConcurrentHashMap详解(面试的重点)
JUC第十五讲:JUC集合-ConcurrentHashMap详解 本文是JUC第十五讲:JUC集合-ConcurrentHashMap详解。JDK1.7之前的ConcurrentHashMap使用分段锁机制实现,JDK1.8则使用数组链表红黑树数据结构和CAS原子操作实现ConcurrentHashMap;本文…...
【TensorFlow Hub】:有 100 个预训练模型等你用
要访问TensorFlow Hub,请单击此处 — https://www.tensorflow.org/hub 一、说明 TensorFlow Hub是一个库,用于在TensorFlow中发布,发现和使用可重用模型。它提供了一种使用预训练模型执行各种任务(如图像分类、文本分析等…...
vulnhub靶机doubletrouble
下载地址:doubletrouble: 1 ~ VulnHub 主机发现 arp-scan -l 端口扫描 nmap --min-rate 1000 -p- 192.168.21.151 端口服务扫描 nmap -sV -sT -O -p22,80 192.168.21.151 漏洞扫描 nmap --scriptvuln -p22,80 192.168.21.151 先去看看web页面 这里使用的是qdpm …...
【数据结构】排序算法(二)—>冒泡排序、快速排序、归并排序、计数排序
👀樊梓慕:个人主页 🎥个人专栏:《C语言》《数据结构》《蓝桥杯试题》《LeetCode刷题笔记》《实训项目》 🌝每一个不曾起舞的日子,都是对生命的辜负 目录 前言 1.冒泡排序 2.快速排序 2.1Hoare版 2.2占…...
SpringCloud-消息组件
1 简介 了解过RabbitMQ后,可能我们会遇到不同的系统在用不同的队列。比如系统A用的Kafka,系统B用的RabbitMQ,但是没了解过Kafka,因此可以使用Spring Stream,它能够屏蔽地产,像JDBC一样,只关心SQ…...
oringin的x轴(按x轴规定值)绘制不规律的横坐标
1.双击x轴 2.选择刻度线标签 3.选择刻度...
ubuntu安装MySQL
一行指令即可! sudo apt install mysql-server常用MySQL服务指令 sudo service mysql status # 查看服务状态 sudo service mysql start # 启动服务 sudo service mysql stop # 停止服务 sudo service mysql restart # 重启服务终端里面进入Mysql 其中-u后面root是我的用户名…...
背包问题学习笔记-多重背包问题
题意描述: 有 N 种物品和一个容量是 V 的背包。第 i 种物品最多有 si 件,每件体积是 vi,价值是 wi。求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。 输出最大价值。输入格式 第一行两个整数…...
Net相关的各类开源项目
Net相关的各类开源项目 WPFHandyControlLive-ChartsWPFDeveloperswpf-uidesignStylet WebScheduleMasterYiShaAdminBlog.CoreNebula.AdminNewLife.CubeOpenAuth UnityuGUIUnityCsReferenceEpitomeMyUnityFrameWorkKSFrameworkTowerDefense-GameFramework-Demo 通用ClientServer…...
阿里云服务器修改IP地址的两种方法
阿里云服务器可以更换IP地址吗?可以的,创建6小时以内的云服务器ECS可以免费更换三次公网IP地址,超过6小时的云服务器,可以将公网固定IP地址转成弹性EIP,然后通过换绑EIP的方式来更换IP地址。阿里云服务器网分享阿里云服…...
SpringMVC的数据绑定
一、前言 SpringMVC的数据绑定是指将HTTP请求参数绑定到Java对象上。这样可以方便地从请求中获取数据并将其传递给业务逻辑。在SpringMVC中,可以使用RequestParam和ModelAttribute等注解来实现数据绑定。 二、使用RequestParam注解 RequestParam注解用于将请求参…...
1.1.OpenCV技能树--第一单元--OpenCV简介
目录 1.文章内容来源 2.OpenCV简介 3.课后习题代码复现 4.易错点总结与反思 1.文章内容来源 1.题目来源:https://edu.csdn.net/skill/practice/opencv-77f629e4593845b0bf97e74ca8ec95ae/8292?languageopencv&materialId20807 2.资料来源:https://edu.csdn.net/skill…...
transformer不同的包加载模型的结构不一样
AutoModel AutoModelForTokenClassification 结论: AutoModel加载的模型与AutoModelForTokenClassification最后一层是不一样的,从这个模型来看,AutoModelForTokenClassification加载的结果是对的 问题: 为什么AutoModel和Aut…...
【MyBatis-Plus】快速精通Mybatis-plus框架—核心功能
刚才的案例中都是以id为条件的简单CRUD,一些复杂条件的SQL语句就要用到一些更高级的功能了。 1.条件构造器 除了新增以外,修改、删除、查询的SQL语句都需要指定where条件。因此BaseMapper中提供的相关方法除了以id作为where条件以外,还支持…...
C语言:选择+编程(每日一练Day9)
目录 选择题: 题一: 题二: 题三: 题四: 题五: 编程题: 题一:自除数 思路一: 题二:除自身以外数组的乘积 思路二: 本人实力有限可能对…...
蓝桥等考Python组别十三级003
第一部分:选择题 1、Python L13 (15分) 运行下面程序,输出的结果是( )。 t = (1, 2, 2, 1, 4, 3, 2) print(t.count(2)) 1234正确答案:C 2、Python L13 (...
2023年CSP-J真题详解+分析数据(选择题篇)
目录 前言 2023CSP-J江苏卷详解 小结 前言 下面由我来给大家讲解一下CSP-J的选择题部分。 2023CSP-J江苏卷详解 1.答案 A 解析:const在C中是常量的意思,其作用是声明一个变量,值从头至尾不能被修改 2.答案 D 解析:八进制…...
测试微信模版消息推送
进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...
python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...
sqlserver 根据指定字符 解析拼接字符串
DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...
Linux-07 ubuntu 的 chrome 启动不了
文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了,报错如下四、启动不了,解决如下 总结 问题原因 在应用中可以看到chrome,但是打不开(说明:原来的ubuntu系统出问题了,这个是备用的硬盘&a…...
Java入门学习详细版(一)
大家好,Java 学习是一个系统学习的过程,核心原则就是“理论 实践 坚持”,并且需循序渐进,不可过于着急,本篇文章推出的这份详细入门学习资料将带大家从零基础开始,逐步掌握 Java 的核心概念和编程技能。 …...
Yolov8 目标检测蒸馏学习记录
yolov8系列模型蒸馏基本流程,代码下载:这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中,**知识蒸馏(Knowledge Distillation)**被广泛应用,作为提升模型…...
无人机侦测与反制技术的进展与应用
国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机(无人驾驶飞行器,UAV)技术的快速发展,其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统,无人机的“黑飞”&…...
基于Springboot+Vue的办公管理系统
角色: 管理员、员工 技术: 后端: SpringBoot, Vue2, MySQL, Mybatis-Plus 前端: Vue2, Element-UI, Axios, Echarts, Vue-Router 核心功能: 该办公管理系统是一个综合性的企业内部管理平台,旨在提升企业运营效率和员工管理水…...
「全栈技术解析」推客小程序系统开发:从架构设计到裂变增长的完整解决方案
在移动互联网营销竞争白热化的当下,推客小程序系统凭借其裂变传播、精准营销等特性,成为企业抢占市场的利器。本文将深度解析推客小程序系统开发的核心技术与实现路径,助力开发者打造具有市场竞争力的营销工具。 一、系统核心功能架构&…...
深入浅出Diffusion模型:从原理到实践的全方位教程
I. 引言:生成式AI的黎明 – Diffusion模型是什么? 近年来,生成式人工智能(Generative AI)领域取得了爆炸性的进展,模型能够根据简单的文本提示创作出逼真的图像、连贯的文本,乃至更多令人惊叹的…...
