当前位置: 首页 > news >正文

7.Tensors For Beginneers - Convector Components

介绍协向量时,曾说过它们有点像 行向量, 行向量确实以某种方式代表了协向量,

这里说明一下:

协向量是不变的; 协向量组件是可变的。

协向量不依赖坐标系,协向量的组件取决于坐标系。

当我们说协向量具有组件时,我们的意思是?

要记住:协向量是 一个 从向量到实数的函数,协向量并不存在向量空间V中,协向量只是将V中的向量作为输入,所以我们不能使用V中的基向量来构造协向量,
所以应该怎么做才对?

从V中取两基向量,并引入两个协向量(从向量到实数的函数),
并定义它们的计算结果,

如图:

还记得那个 kronecker Delta 吗。

这些协向量\epsilon 实际上看起来像一堆线吗?  为找到答案,把它们作用到某个向量v上,

仔细 看,这些\epsilon 所做的是:它们在投射矢量分量,是把?


当把\epsilon^{i}应用到v中,我们将得到v基向量e1、e2上的组件,
所以,
\epsilon^{1}看起来就像是:可以帮助我们获得向量v的第一个分量,其中e1就是指向这个分量的方向。

\epsilon^{2}看起来就像是:可以帮助我们获得向量v的第2个分量,其中e2就是指向这个分量的方向。

这就是协向量的样子(视觉上)

现在我们对向量v应用一些通用的协向量α,α可以是任一协向量

(注:α1=α*e1=一个数,α2也是一个数,上面表示 任意一个协向量α = 数1*\epsilon^{1} + 数2*\epsilon^{2}

所以上面我们所作的是:编写了一个通用的协向量α(α可以是任意协向量) 作为\epsilon协向量的线性组合,
所以这意味着协向量\epsilon 是 构成了所有协向量集合的基底,
也因为这个原因,\epsilon被称为 ”对偶基“ , 因为它们是对偶空间V* 上的 基底。

以上我们就用了代数的方式写出了 一个协向量的表达,

现考虑视觉上,
 

假设有一个协向量α,一簇在e1、e2为基底的向量空间的线, 可通过把α应用到基底e1、e2上来获得α的组件,只需计算穿透的行数,

我们可以把α写成\epsilon^{1}\epsilon^{2}的线性组合 的方式来表示α。

所以过程就是:从基底向量开始,使用这个定义 来获得对偶协向量的基底,然后使用 这些  我们就可以将任意的协向量表示为对偶基的线性组合。(这是对上面整个过程的描述)

但记住,\epsilon^{1}\epsilon^{2}并不是 唯一的基底,(正如向量空间那般,基底可以变,基底个数不变那般)

因此,我们可以用别的向量开始,如:

并使用以下规则,我们可以定义另一对对偶基,
规则--就是规定

同样地,可将任意协向量α表示为\tilde \epsilon^{1} 、 \tilde \epsilon^{2} 的线性组合。

例子:

已知一个协向量α在 旧(对偶)基\epsilon^{1}\epsilon^{2}下的线性表示, 同时有一对新(对偶)基\tilde \epsilon^{1} 、 \tilde \epsilon^{2},想把协向量α利用新基\tilde \epsilon^{1} 、 \tilde \epsilon^{2}做线性表示,

将α应用到新基底,

以上是向量的转换;
以下是基底的转换; 

仔细观察,协向量中:基底的转换: 旧基到新基---用B,新基到旧基===用F;
                    这与向量的完全相反!
                  协向量中:某个协向量的转换:利用旧基到利用新基---用F,利用新基到利用旧基--用B
                     这与向量的完全相反!

这就是为什么不能只翻转列向量来获得行向量,--------这在正交基上有效,

你看上图, 对于利用正交基, 协向量你把它从列向量转置成行向量,2,1仍是2,1;

但是,一旦不是正交基了, 【1;0】变为 【5,-3/4】明显不能靠转置来获得。

所以,向量分量是通过计算构建向量时使用了多少基向量来测量的,
但是协向量分量是通过计算 基向量 穿过的协向量线的数量来测量的。

 

相关文章:

7.Tensors For Beginneers - Convector Components

介绍协向量时,曾说过它们有点像 行向量, 行向量确实以某种方式代表了协向量, 这里说明一下: 协向量是不变的; 协向量组件是可变的。 协向量不依赖坐标系,协向量的组件取决于坐标系。 当我们说协向量具有组…...

直线导轨坏了可以维修吗?

直线导轨是工业自动化设备中常用的零部件,其性能和使用寿命对设备的稳定运行和产能有着直接的影响,在生产中,由于各种原因,直线导轨会出现各种问题,那么,直线导轨的维修方法究竟是怎样的呢?我们…...

Java基础--泛型详解

一、背景 java推出泛型之前,集合元素类型可以是object类型,能够存储任意的数据类型对象,但是在使用过程中,如果不知道集合里面的各个元素的类型,在进行类型转换的时候就很容易引发ClassCastException异常。 二、概念 …...

学习搜狗的workflow,MacBook上如何编译

官网说可以在MacBook上也可以运行,但是编译的时候却有找不到openssl的错误: 看其他博客也有类似的错误,按照类似的思路去解决 问题原因和解决办法 cmake编译的时候,没有找到openssl的头文件,需要设置cmake编译环境下…...

Ubuntu使用cmake和vscode开发自己的项目,引用自己的头文件和openCV

创建文件夹 mkdir my_proj 继续创建include 和 src文件夹,形成如下的目录结构 用vscode打开项目 创建add.h #ifndef ADD_H #define ADD_Hint add(int numA, int numB);#endif add.cpp #include "add.h"int add(int numA, int numB) {return numA nu…...

2) dataset, dataloader

dataset, dataloader torchvision.datasets里面集成了一些常见的数据集,例如MNIST和CIFAR10 1) Dataset 以MNIST为例,其使用方式如下 import torch import torchvision from torchvision import transformstrain_dataset = torchvision.datasets.MNIST(root=../data,trai…...

阿里云PolarDB自研数据库详细介绍_兼容MySQL、PostgreSQL和Oracle语法

阿里云PolarDB数据库是阿里巴巴自研的关系型分布式云原生数据库,PolarDB兼容三种数据库引擎:MySQL、PostgreSQL、Oracle(语法兼容),目前提供云原生数据库PolarDB MySQL版、云原生数据库PolarDB PostgreSQL版和云原生数…...

[软件工具]opencv-svm快速训练助手教程解决opencv C++ SVM模型训练与分类实现任务支持C# python调用

opencv中已经提供了svm算法可以对图像实现多分类,使用svm算法对图像分类的任务多用于场景简单且对时间有要求的场景,因为opencv的svm训练一般只需要很短时间就可以完成训练任务。但是目前网上没有一个工具很好解决训练问题,大部分需要自己编程…...

邮件注册(一)验证码发送

通过邮箱实现注册&#xff0c;用户请求验证码完成注册操作。 导入依赖&#xff1a; <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-mail</artifactId></dependency><dependency><g…...

【网络安全---sql注入(2)】如何通过SQL注入getshell?如何通过SQL注入读取文件或者数据库数据?一篇文章告诉你过程和原理。

前言 本篇博客主要是通过piakchu靶场来讲解如何通过SQL注入漏洞来写入文件&#xff0c;读取文件。通过SQL输入来注入木马来getshell等&#xff0c;讲解了比较详细的过程&#xff1b; 如果想要学习SQL注入原理以及如何进行SQL注入&#xff0c;我也写了一篇详细的SQL注入方法及…...

正点原子嵌入式linux驱动开发——TF-A移植

经过了之前的学习&#xff0c;除了TF-A的详细启动流程仍待更新&#xff0c;TF-A的使用和其对应的大致启动流程已经进行过了学习。但是当我们实际做产品时&#xff0c;硬件平台肯定会和ST官方的有区别&#xff0c;比如DDR容量会改变&#xff0c;自己的硬件没有使用到官方EVK开发…...

GB28181学习(六)——实时视音频点播(数据传输部分)

GB28181系列文章&#xff1a; 总述&#xff1a;https://blog.csdn.net/www_dong/article/details/132515446 注册与注销&#xff1a;https://blog.csdn.net/www_dong/article/details/132654525 心跳保活&#xff1a;https://blog.csdn.net/www_dong/article/details/132796…...

JMeter接口自动化测试(数据驱动)

之前我们的用例数据都是配置在HTTP请求中&#xff0c;每次需要增加&#xff0c;修改用例都需要打开JMeter重新编辑&#xff0c;当用例越来越多的时候&#xff0c;用例维护起来就越来越麻烦&#xff0c;有没有好的方法来解决这种情况呢&#xff1f;我们可以将用例的数据存放在cs…...

数据结构:二叉树(超详解析)

目录​​​​​​​ 1.树概念及结构 1.1树的概念 1.2树的相关概念 1.3树的表示 1.3.1孩子兄弟表示法&#xff1a; 1.3.2双亲表示法&#xff1a;只存储双亲的下标或指针 两节点不在同一树上&#xff1a; 2.二叉树概念及结构 2.1.概念 2.2.特殊的二叉树&#xff1a; 2…...

【考研数学】高等数学第七模块 —— 曲线积分与曲面积分 | 4. 对坐标的曲面积分(第二类曲面积分)与场论初步

文章目录 二、曲面积分2.2 对坐标的曲面积分&#xff08;第二类曲面积分&#xff09;1. 问题产生 —— 流量2. 对坐标的曲面积分的定义&#xff08;了解&#xff09;3. 对坐标的曲面积分的性质4. 对坐标的曲面积分的计算法&#xff08;1&#xff09; 二重积分法&#xff08;2&a…...

使用Thrift实现跨语言RPC调用

&#x1f4cb; 个人简介 &#x1f496; 作者简介&#xff1a;大家好&#xff0c;我是阿牛&#xff0c;全栈领域优质创作者。&#x1f61c;&#x1f4dd; 个人主页&#xff1a;馆主阿牛&#x1f525;&#x1f389; 支持我&#xff1a;点赞&#x1f44d;收藏⭐️留言&#x1f4d…...

【QT5-程序控制电源-RS232-SCPI协议-上位机-基础样例【1】】

【QT5-程序控制电源-RS232-SCPI协议-上位机-基础样例【1】】 1、前言2、实验环境3、自我总结1、基础了解仪器控制-熟悉仪器2、连接SCPI协议3、选择控制方式-程控方式-RS2324、代码编写 4、熟悉协议-SCPI协议5、测试实验-测试指令&#xff08;1&#xff09;硬件连接&#xff08;…...

leetcode 1049. 最后一块石头的重量 II、494. 目标和、474. 一和零

1049. 最后一块石头的重量 II 有一堆石头&#xff0c;用整数数组 stones 表示。其中 stones[i] 表示第 i 块石头的重量。 每一回合&#xff0c;从中选出任意两块石头&#xff0c;然后将它们一起粉碎。假设石头的重量分别为 x 和 y&#xff0c;且 x < y。那么粉碎的可能结果…...

Error string: Could not load library

启动Rivz时&#xff0c;报错&#xff1a; Error string: Could not load library (Poco exception libg2o_csparse_extension.so.0.1: cannot open shared object file: No such file or directory) [ERROR] [1696572310.529059051]: Failed to load nodelet [/radar_graph_s…...

pom.xml里的标签

pom.xml 是 Maven 项目的配置文件&#xff0c;其中包含了各种配置信息和依赖管理。下面是一些常见的 pom.xml 中的标签和其作用的简要说明&#xff1a; <project>&#xff1a;根标签&#xff0c;定义了整个项目的基本信息和结构。 <groupId>&#xff1a;指定项目所…...

JavaSec-RCE

简介 RCE(Remote Code Execution)&#xff0c;可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景&#xff1a;Groovy代码注入 Groovy是一种基于JVM的动态语言&#xff0c;语法简洁&#xff0c;支持闭包、动态类型和Java互操作性&#xff0c…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】

微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来&#xff0c;Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

Spring Boot 实现流式响应(兼容 2.7.x)

在实际开发中&#xff0c;我们可能会遇到一些流式数据处理的场景&#xff0c;比如接收来自上游接口的 Server-Sent Events&#xff08;SSE&#xff09; 或 流式 JSON 内容&#xff0c;并将其原样中转给前端页面或客户端。这种情况下&#xff0c;传统的 RestTemplate 缓存机制会…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统&#xff0c;智慧工地全套源码&#xff0c;java版智慧工地源码&#xff0c;支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求&#xff0c;提供“平台网络终端”的整体解决方案&#xff0c;提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

【JVM】Java虚拟机(二)——垃圾回收

目录 一、如何判断对象可以回收 &#xff08;一&#xff09;引用计数法 &#xff08;二&#xff09;可达性分析算法 二、垃圾回收算法 &#xff08;一&#xff09;标记清除 &#xff08;二&#xff09;标记整理 &#xff08;三&#xff09;复制 &#xff08;四&#xff…...

uniapp 字符包含的相关方法

在uniapp中&#xff0c;如果你想检查一个字符串是否包含另一个子字符串&#xff0c;你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的&#xff0c;但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...

[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.

ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #&#xff1a…...

破解路内监管盲区:免布线低位视频桩重塑停车管理新标准

城市路内停车管理常因行道树遮挡、高位设备盲区等问题&#xff0c;导致车牌识别率低、逃费率高&#xff0c;传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法&#xff0c;正成为破局关键。该设备安装于车位侧方0.5-0.7米高度&#xff0c;直接规避树枝遮…...

LangFlow技术架构分析

&#x1f527; LangFlow 的可视化技术栈 前端节点编辑器 底层框架&#xff1a;基于 &#xff08;一个现代化的 React 节点绘图库&#xff09; 功能&#xff1a; 拖拽式构建 LangGraph 状态机 实时连线定义节点依赖关系 可视化调试循环和分支逻辑 与 LangGraph 的深…...

C++_哈希表

本篇文章是对C学习的哈希表部分的学习分享 相信一定会对你有所帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、基础概念 1. 哈希核心思想&#xff1a; 哈希函数的作用&#xff1a;通过此函数建立一个Key与存储位置之间的映射关系。理想目标&#xff1a;实现…...