【1.1】神经网络:关于神经网络的介绍
✅作者简介:大家好,我是 Meteors., 向往着更加简洁高效的代码写法与编程方式,持续分享Java技术内容。
🍎个人主页:Meteors.的博客
💞当前专栏: 神经网络(随缘更新)
✨特色专栏: 知识分享
🥭本文内容:【1.1】神经网络:神经网络基础知识
📚 ** ps ** : 阅读这篇文章如果有问题或者疑惑,欢迎各位在评论区提问或指出!
----------------------------------------------------- 目录 ---------------------------------------------------------
目录
一、介绍
1. 概念
2. 知识架构
二、神经网络的应用领域
1. 图像识别
2. 语音识别
3. 自然语言处理
三、神经网络的训练和优化算法
1. 概念
2. 常见的一些优化算法
1)反向传播算法
2)随机梯度下降
3)自适应学习率算法
4)正则化技术
5)预训练和微调
6)其他算法
四、神经网络的挑战和未来发展
1.挑战
2. 发展方向
五、神经网络与人工智能的关系
六、神经网络的实践和应用指南
---------------------------------------------------------------------------------------------------------------------------------
一、介绍
1. 概念
神经网络:一种以(人工)神经元为基础的基本单元模型(主要就是学习这个计算模型)
2. 知识架构
二、神经网络的应用领域
通过学习从输入到输出的映射关系,从而实现各种任务,常见的有:
1. 图像识别
通常采用卷积神经网络(Convolutional Neural Networks, CNN)的结构。CNN能够通过学习图像中的特征来实现图像分类、目标检测和图像分割等任务。它的核心是卷积层和池化层,通过层层堆叠,提取图像的低级特征到高级抽象特征(重点),最后通过全连接层进行分类。
2. 语音识别
循环神经网络(Recurrent Neural Networks, RNN)和其变种是常用的模型。RNN可以建模序列数据的依赖关系,对语音信号进行处理并转换为文本信息。通过训练,RNN可以学习到语音信号的语义信息和发音规律,并进行准确的文本转录。
3. 自然语言处理
常用的神经网络模型包括循环神经网络(RNN)、长短期记忆网络(Long Short-Term Memory, LSTM)和注意力机制(Attention Mechanism)。这些模型可以处理语言的序列性质,实现文本分类、命名实体识别、情感分析、机器翻译等任务。通过预训练的语言模型(如BERT、GPT等),还可以生成连贯的文本。
三、神经网络的训练和优化算法
1. 概念
神经网络的训练和优化算法是为了调整网络参数,使其能够更好地适应输入数据并减小损失函数(重点)ps:损失函数可以大概理解为得出的结果和目标的差距。
2. 常见的一些优化算法
1)反向传播算法
反向传播是一种基于梯度下降的优化算法,通过计算损失函数对参数的梯度,并将该梯度进行反向传播,更新网络中的参数。它是神经网络最常用的训练算法之一。
2)随机梯度下降
SGD是一种基于梯度的优化算法,每次迭代使用一小批样本(称为mini-batch)来计算损失函数的梯度和更新参数。相比于全批量梯度下降,SGD具有更低的计算成本和更快的收敛速度。
3)自适应学习率算法
为了提高梯度下降算法的效果,一些自适应学习率算法被提出。其中包括Adagrad、RMSprop、Adam等,它们在更新参数时会根据历史梯度信息动态地调整学习率,从而加快收敛速度和提高性能。
4)正则化技术
为了防止过拟合(overfitting),正则化技术被广泛应用于神经网络训练中。常见的正则化技术包括L1正则化、L2正则化以及Dropout等。它们通过对损失函数引入正则化项,限制模型参数的复杂性,提高模型的泛化能力。
5)预训练和微调
对于深度神经网络,预训练和微调是一种常见的训练策略。预训练阶段使用无监督学习方法初始化网络参数,然后在有标签数据上进行微调。这种策略可以帮助网络更好地初始化参数,并提高性能。
6)其他算法
如批归一化(Batch Normalization)、学习率衰减(Learning Rate Decay)、梯度剪裁(Gradient Clipping)等,它们都可以在特定场景下提升神经网络的训练效果和收敛速度。
四、神经网络的挑战和未来发展
1.挑战
神经网络的训练(为了缩小和最终目标的差距)需要大量的数据进行训练,并要求这些数据需要高质量和具有代表性(比较难找)。神经网络的训练和推理需要大量的计算资源,于大规模的深度神经网络,其计算复杂度非常高(不仅烧显卡,还费时间)。由于神经网络的黑盒模型特性,神经网络的输出结果难以被理解和解释。这导致神经网络在某些场景下无法得到广泛的应用(难)。
2. 发展方向
模型优化:通过优化神经网络结构、训练方法和算法,以更高效、更准确和更能够解释的方式解决上述挑战。
自动机器学习(AutoML):自动机器学习是一种利用人工智能和优化技术进行神经网络自动设计和调参的方法,将大大提高神经网络的可用性和可靠性,加速人工智能应用的发展。
多模态学习:多模态学习将不同类型的数据合并到一个模型中,例如图像和语音、文本和图像等,使神经网络可以更好地处理复杂的跨模态信息,并得到更为准确和全面的结果。
强化学习和自适应学习:通过将神经网络与强化学习和自适应学习相结合,提高神经网络在控制系统、自主智能和自适应学习等方面的表现。
五、神经网络与人工智能的关系
神经网络是人工智能(AI)的一个重要组成部分。
人工智能是研究和开发能够模拟和实现人类智能的理论、方法和技术。
而神经网络作为一种模拟生物神经系统的计算模型,可以用来解决人工智能中的诸多问题。(诸如上面提到的应用领域)
六、神经网络的实践和应用指南
神经网络的实践和应用涉及多个环节,大致包括数据准备、网络架构选择、参数设置和调优、数据增强和预处理、训练与验证、模型评估与部署等(这里就不冗余的列出了,后续会进行具体的更新)。持续学习和优化是神经网络应用过程中的关键。
最后,
后续内容会陆续更新,希望文章对你有所帮助!
相关文章:

【1.1】神经网络:关于神经网络的介绍
✅作者简介:大家好,我是 Meteors., 向往着更加简洁高效的代码写法与编程方式,持续分享Java技术内容。 🍎个人主页:Meteors.的博客 💞当前专栏: 神经网络(随缘更新) ✨特色…...

java项目中git的.ignore文件设置
在Git中,ignore是用来指定Git应该忽略的故意不被追踪的文件。它并不影响已经被Git追踪的文件。我们可以通过.ignore文件在Git中指定要忽略的文件。 当我们执行git add命令时,Git会检查.gitignore文件,并自动忽略这些文件和目录。这样可以避免…...

11.3 读图举例
一、低频功率放大电路 图11.3.1所示为实用低频功率放大电路,最大输出功率为 7 W 7\,\textrm W 7W。其中 A \textrm A A 的型号为 LF356N, T 1 T_1 T1 和 T 3 T_3 T3 的型号为 2SC1815, T 4 T_4 T4 的型号为 2SD525, T 2…...

黑马JVM总结(二十八)
(1)语法糖-foreach (2)语法糖-switch-string (3)语法糖-switch-enum (4)语法糖-枚举类 枚举类 (5)语法糖-twr1...

2023年DDoS攻击发展趋势的分析和推断
DDoS是一种非常“古老”的网络攻击技术,随着近年来地缘政治冲突对数字经济格局的影响,DDoS攻击数量不断创下新高,其攻击的规模也越来越大。日前,安全网站Latest Hacking News根据DDoS攻击防护服务商Link11的统计数据,对…...

RT-Thread 内存管理(学习二)
内存堆管理应用示例 这是一个内存堆的应用示例,这个程序会创建一个动态的线程,这个线程会动态申请内存并释放,每次申请更大的内存,当申请不到的时候就结束。 #include <rtthread.h>#define THREAD_PRIORITY 25 #defi…...

怎么修改jupyter lab 的工作路径而不是直接再桌面路径打开
要修改Jupyter Lab的工作路径,你可以按照以下步骤操作: 打开终端或命令提示符窗口。 输入 jupyter lab --generate-config 命令来生成Jupyter Lab的配置文件。 找到生成的配置文件,通常会位于 ~/.jupyter/jupyter_notebook_config.py。 使…...
高精度NTP时钟服务器(时间同步服务器)技术方案探讨
高精度NTP时钟服务器(时间同步服务器)技术方案探讨 高精度NTP时钟服务器(时间同步服务器)技术方案探讨 四分天下目前,全球的 GPS卫星同步系统处于“四分天下”状态,以美俄两国的系统处于领导地位ÿ…...
LFU 缓存 -- LinkedHashSet
相关题目: 460. LFU 缓存 相关文章 LRU 缓存 – 哈希链表 # 460. LFU 缓存 # Python中和 LinkedHashSet 相似的数据结构 OrderedDict from collections import OrderedDict class LFUCache:# key 到 val 的映射,我们后文称为 KV 表keyToVal {}# key 到…...

用IDEA操作数据库--MySQL
IDEA集成了DataGrip的操作数据库的功能 就可以省略我们下载SQLyog/Navicat/DataGrip这些图形化操作工具了 以下是IDEA的使用 输入数据库的用户和密码...

扫雷游戏的递归解法
目录 一,题目 二,题目接口 三,解题思路 四,解题代码 一,题目 让我们一起来玩扫雷游戏! 给你一个大小为 m x n 二维字符矩阵 board ,表示扫雷游戏的盘面,其中: M 代表一…...
java练习 day5
一、Nim 游戏 1、题目链接 点击跳转到题目位置 2、代码 class Solution {public boolean canWinNim(int n) {if(n % 4 0){return false;}return true;} }3、知识点 (1) 通过模拟来寻找 规律。 二、区域和检索 - 数组不可变 1、题目链接 点击跳转到题目位置 2、代码 …...

腾讯云轻量和CVM有啥区别?怎么选择服务器配置?
腾讯云轻量服务器和云服务器有什么区别?为什么轻量应用服务器价格便宜?是因为轻量服务器CPU内存性能比云服务器CVM性能差吗?轻量应用服务器适合中小企业或个人开发者搭建企业官网、博客论坛、微信小程序或开发测试环境,云服务器CV…...

服务器or虚拟机安装SSH和虚拟机or服务器设置远程服务权限
第一步 服务器/虚拟机安装SSH工具,这是外部SSH终端连接服务器/虚拟机的第一步! sudo apt update && sudo apt upgrade#更新apt sudo apt install openssh-server#安装SSH工具 service ssh status#查看SSh运行状态 sudo systemctl enable --now ssh#运行SSH工具第二步…...

Sentinel入门
文章目录 初始Sentinel雪崩问题服务保护技术对比认识Sentinel微服务整合Sentinel 限流规则快速入门流控模式关联模式链路模式 流控效果warm up排队等待 热点参数限流全局参数限流热点参数限流 隔离和降级FeignClient整合Sentinel线程隔离熔断降级慢调用异常比例、异常数 授权规…...

Mac解压缩软件BetterZip免费版注册码下载
软件介绍 BetterZip免费版是一款适用于Mac系统的解压缩软件,软件具备了专业、实用、简单等特点,它可以让用户更快捷的向压缩文件中添加和删除文件,同时兼容性也十分优秀,支持ZIP , SIT , TAR、BZIP2 &…...

在win10里顺利安装了apache2.4.41和php7.4.29以及mysql8.0.33
一、安装apache和php 最近在学习网站搭建。其中有一项内容是在windows操作系统里搭建apachephp环境。几天前根据一本书的上的说明尝试了一下,在win10操作系统里安装这两个软件:apache2.4.41和php7.4.29,安装以后apche能正常启动,…...

云服务仿真:完全模拟 AWS 服务的本地体验 | 开源日报 No.45
localstack/localstack Stars: 48.7k License: NOASSERTION LocalStack 是一个云服务仿真器,可以在您的笔记本电脑或 CI 环境中以单个容器运行。它提供了一个易于使用的测试/模拟框架,用于开发云应用程序。主要功能包括: 在本地机器上完全…...

css实现不规则图片文字环绕效果
依旧,先上效果图,可以看见,文字环绕这个椭圆形的图片, 依旧是遵循开源精神,代码就直接放下面了 (点个赞或者给个评论啥的吧,我就发现我的文章全是光看不点赞,不评论的的) <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8&quo…...

Day-05 CentOS7.5 安装 Docker
参考 : Install Docker Engine on CentOS | Docker DocsLearn how to install Docker Engine on CentOS. These instructions cover the different installation methods, how to uninstall, and next steps.https://docs.docker.com/engine/install/centos/ Doc…...
OpenLayers 可视化之热力图
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 热力图(Heatmap)又叫热点图,是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...

循环冗余码校验CRC码 算法步骤+详细实例计算
通信过程:(白话解释) 我们将原始待发送的消息称为 M M M,依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)(意思就是 G ( x ) G(x) G(x) 是已知的)࿰…...
ssc377d修改flash分区大小
1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八
现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet,点击确认后如下提示 最终上报fail 解决方法 内核升级导致,需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

微服务商城-商品微服务
数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...
C++八股 —— 单例模式
文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全(Thread Safety) 线程安全是指在多线程环境下,某个函数、类或代码片段能够被多个线程同时调用时,仍能保证数据的一致性和逻辑的正确性…...

Spring数据访问模块设计
前面我们已经完成了IoC和web模块的设计,聪明的码友立马就知道了,该到数据访问模块了,要不就这俩玩个6啊,查库势在必行,至此,它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据(数据库、No…...
rnn判断string中第一次出现a的下标
# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...