【深度学习】UNIT-DDPM核心讲解
文章目录
- 大致介绍:
- 扩散损失:
- 转换损失:
- 循环一致性损失:
- 推理过程:
- 优缺点:
参考文章:
https://blog.csdn.net/ssshyeong/article/details/127210086
这篇文章对整个文章 UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models进行了从头到尾的讲解,可以看一下。在此写一下自己的理解。
大致介绍:
这篇论文提出了一种新的图像翻译方法,即无配对的图像翻译,基于Denoising Diffusion Probabilistic Models(DDPM)。传统的无配对图像翻译方法通常使用对抗生成网络(GAN)或变分自编码器(VAE)来模拟两种语言之间的映射,但这些方法通常需要大量配对的数据来训练模型。而本文提出的方法则不需要配对的数据,因为它使用DDPM来学习两种语言之间的映射。DDPM是一种基于概率模型的去噪方法,可以通过对噪声进行多次迭代来生成清晰图像。本文将DDPM应用于无配对图像翻译,通过对两种语言图片进行多次迭代训练,可以获得较好的翻译效果。
具体来说,本文的方法分为两个步骤:训练阶段和生成阶段。在训练阶段,将DDPM应用于两种语言的图片数据集上,训练出两个DDPM模型。在生成阶段,通过交替对两个DDPM模型进行迭代,将一个语言的图片转换成另一个语言的图片。
本文的方法相对于传统方法的优点是不需要配对的数据,而且生成的图片具有一定的多样性和清晰度。但缺点是训练时间相对较长,因为DDPM模型需要进行多次迭代训练。
总之,本文提出了一种新的无配对图像翻译方法,通过应用DDPM模型实现了两种语言之间的图片转换,为跨语言翻译和相关领域的研究提供了新思路。
图解:

可以看到,本文使用两个扩散过程(源域和目标域的扩散),以及两个转换函数(将源域转到目标域和将目标域转到源域),也就是图像翻译。
为了使两个域之间能够转换,本文将最p过程进行了修改,使其带有条件。
扩散损失:
首先训练扩散过程中的参数:

依次排列括号里面的公式:A在t时刻的扩散图像;首先将A域图像转到B上,然后使用A域的扩散得到扩散图像,时刻t (先翻译,后扩散)
B在t时刻的扩散图像;首先将B域图像转到A上,然后使用B域的扩散得到扩散图像;时刻t。
转换损失:
接下来训练翻译函数,固定A和B的扩散参数:

依次罗列括号里面的公式:
先将B域图像转到A域,然后得到t时刻的扩散图像(A域上);B域图像在t时刻的扩散图像(B域上);时刻t。
B域图像在t时刻的扩散图像(B域上);首先将B域图像转到A上,然后使用B域的扩散得到扩散图像(B域上);时刻t。
后面一个类似。
循环一致性损失:

最终的损失函数:

推理过程:

之后使用DDPM里面的公式对其一步一步推导即可。

优缺点:
模型图:
扩散模型采样步骤很费时间,可以使用DDIM等方法进行缩减;还可以通过其他trick进行改进生成质量(如注意力机制或者NL等方法)。
相关文章:
【深度学习】UNIT-DDPM核心讲解
文章目录 大致介绍:扩散损失:转换损失:循环一致性损失:推理过程:优缺点: 参考文章: https://blog.csdn.net/ssshyeong/article/details/127210086 这篇文章对整个文章 UNIT-DDPM: UNpaired Imag…...
Java 线程的优先级
🙈作者简介:练习时长两年半的Java up主 🙉个人主页:程序员老茶 🙊 ps:点赞👍是免费的,却可以让写博客的作者开兴好久好久😎 📚系列专栏:Java全栈,…...
金融数学方法:牛顿法
目录 1.牛顿法1.1 牛顿法介绍1.2 算法步骤 2. 具体算例3.总结 1.牛顿法 1.1 牛顿法介绍 牛顿法(Newton’s method),也被称为牛顿-拉夫森方法(Newton-Raphson method),是一种用于数值逼近根的迭代方法。它是…...
MongoTemplate | 多条件查询
MongoTemplate查询 Resource private MongoTemplate mongoTemplate;public <T> List<T> getDataList(String param1, Long param2, Class<T> clazz) {// 构建queryQuery query constructQuery(param1, param2);// 查询return mongoTemplate.find(query, cl…...
优秀程序员是怎么思考的?
首发日更公 Z 号:十二又十三 作为一名优秀的程序员,思考是我们工作中最重要的一部分。它不仅能够帮助我们解决问题,还能够提升我们的技术水平和职业发展。那么,优秀程序员是如何思考的呢?本文将为您介绍一个思考框架和…...
【juc】countdownlatch实现游戏进度
目录 一、截图示例二、代码示例 一、截图示例 二、代码示例 package com.learning.countdownlatch;import java.util.Arrays; import java.util.Random; import java.util.concurrent.CountDownLatch; import java.util.concurrent.ExecutorService; import java.util.concurr…...
Spring Webflux HttpHandler源码整理
HttpHandler的构造 自动启动配置类:HttpHandlerAutoConfigurationBean public HttpHandler httpHandler(ObjectProvider<WebFluxProperties> propsProvider) {HttpHandler httpHandler WebHttpHandlerBuilder.applicationContext(this.applicationContext).…...
Qt扩展-Advanced-Docking 简介及配置
Advanced-Docking 简介及配置 一、概述二、项目结构三、安装配置四、代码测试 一、概述 Advanced-Docking 是类似QDockWidget 功能的多窗口停靠功能的库。很像visual stdio 的 停靠功能,这个库对于停靠使用的比较完善。很多的软件都使用了这个框架。 项目源地址&a…...
Decorator
Decorator 动机 在某些情况下我们可能会“过度地使用继承来扩展对象的功能”, 由于继承为类型引入的静态特质,使得这种扩展方式缺乏灵活性; 并且随着子类的增多(扩展功能的增多),各种子类的组合ÿ…...
分布式文件系统HDFS(林子雨慕课课程)
文章目录 3. 分布式文件系统HDFS3.1 分布式文件系统HDFS简介3.2 HDFS相关概念3.3 HDFS的体系结构3.4 HDFS的存储原理3.5 HDFS数据读写3.5.1 HDFS的读数据过程3.5.2 HDFS的写数据过程 3.6 HDFS编程实战 3. 分布式文件系统HDFS 3.1 分布式文件系统HDFS简介 HDFS就是解决海量数据…...
CSS中:root伪类的使用
在CSS中,:root是一个伪类选择器,它选择的是文档树的根元素。在HTML文档中,这个根元素通常是<html>。:root伪类选择器常常被用于定义全局的CSS变量或者设置全局的CSS样式。 例如,你可以使用:root来定义一个全局的字体大小&a…...
VulnHub JANGOW
提示(主机ip分配问题) 因为直接在VulnHub上下载的盒子,在VMware上打开,默认是不分配主机的 所以我们可以在VirtualBox上打开 一、信息收集 发现开放了21和80端口,查看一下80端口 80端口: 检查页面后发现…...
OpenMesh 获取网格面片各个顶点
文章目录 一、简介二、实现代码三、实现效果一、简介 OpenMesh中有很多循环器,这里便是其中一种面顶点循环器,以此来获得面片的各个顶点。 二、实现代码 #define _USE_MATH_DEFINES #include <iostream> #include <unordered_map>...
【前端设计模式】之原型模式
原型模式特性 原型模式(Prototype Pattern)是一种创建型设计模式,它通过克隆现有对象来创建新对象,而不是通过实例化类。原型模式的主要特性包括: 原型对象:原型对象是一个已经存在的对象,它作…...
软件设计原则
设计原则 一、单一原则 1. 如何理解单一职责原则 单一职责原则(Single Responsibility Principle,简称SRP),它要求一个类或模块应该只负责一个特定的功能。实现代码的高内聚和低耦合,提高代码的可读性和可维护性。 …...
【面试HOT100】哈希双指针滑动窗口
系列综述: 💞目的:本系列是个人整理为了秋招面试的,整理期间苛求每个知识点,平衡理解简易度与深入程度。 🥰来源:材料主要源于LeetCodeHot100进行的,每个知识点的修正和深入主要参考…...
Ubuntu20.04 配置 yolov5_ros 功能包记录
文章目录 本文参考自博主源801,结合自己踩坑后修改 项目地址:https://github.com/mats-robotics/yolov5_ros 1.新建工作空间 新建一个工作空间 yolo_ros(名字可自定义),在 yolo_ros 下新建文件夹 src 并catkin_make进行编译 2. 安装相机驱动,可以选用较为主流的 usb_cam 或…...
Flink的处理函数——processFunction
目录 一、处理函数概述 二、Process函数分类——8个 (1)ProcessFunction (2)KeyedProcessFunction (3)ProcessWindowFunction (4)ProcessAllWindowFunction ÿ…...
Linux系统中的ps命令详解及用法介绍
文章目录 一、介绍ps命令A. ps命令的作用B. ps命令的参数 二、常见的ps命令用法A. 显示所有进程信息B. 显示指定进程信息C. 显示指定用户的进程信息D. 按CPU使用率排序显示进程信息E. 按内存使用率排序显示进程信息 三、进一步了解ps命令A. 显示进程树信息B. 显示线程和进程关系…...
机器学习笔记 - 基于pytorch、grad-cam的计算机视觉的高级可解释人工智能
一、pytorch-gradcam简介 Grad-CAM是常见的神经网络可视化的工具,用于探索模型的可解释性,广泛出现在各大顶会论文中,以详细具体地描述模型的效果。Grad-CAM的好处是,可以在不额外训练的情况下,只使用训练好的权重即可获得热力图。 1、CAM是什么? CAM全称Class Activa…...
深入剖析AI大模型:大模型时代的 Prompt 工程全解析
今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...
基于FPGA的PID算法学习———实现PID比例控制算法
基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...
进程地址空间(比特课总结)
一、进程地址空间 1. 环境变量 1 )⽤户级环境变量与系统级环境变量 全局属性:环境变量具有全局属性,会被⼦进程继承。例如当bash启动⼦进程时,环 境变量会⾃动传递给⼦进程。 本地变量限制:本地变量只在当前进程(ba…...
练习(含atoi的模拟实现,自定义类型等练习)
一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...
论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)
笔记整理:刘治强,浙江大学硕士生,研究方向为知识图谱表示学习,大语言模型 论文链接:http://arxiv.org/abs/2407.16127 发表会议:ISWC 2024 1. 动机 传统的知识图谱补全(KGC)模型通过…...
2025盘古石杯决赛【手机取证】
前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...
【决胜公务员考试】求职OMG——见面课测验1
2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...
HTML前端开发:JavaScript 常用事件详解
作为前端开发的核心,JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例: 1. onclick - 点击事件 当元素被单击时触发(左键点击) button.onclick function() {alert("按钮被点击了!&…...
零基础设计模式——行为型模式 - 责任链模式
第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...
tree 树组件大数据卡顿问题优化
问题背景 项目中有用到树组件用来做文件目录,但是由于这个树组件的节点越来越多,导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多,导致的浏览器卡顿,这里很明显就需要用到虚拟列表的技术&…...
